Infomerics Analytics & Research

CIN: U74999DL2020PTC369018

Flat No.108, Golf Apartments, Sujan Singh Park New Delhi – 110 003 iar@infomerics.com, Phone: +9111 41410243, 4141 0244,

Harnessing
Efficiency: The
Rise of Robotic
Solar Panel
Cleaning & O&M

Dated:29th September, 2025

Disclaimer

This report is prepared by Infomerics Analytics & Research Private Limited. Infomerics Analytics & Research has taken utmost care to ensure accuracy and objectivity while developing this report based on information available in Infomerics Analytics & Research 's proprietary database, and other sources considered by Infomerics Analytics & Research as accurate and reliable including the information in public domain. The views and opinions expressed herein do not constitute the opinion of Infomerics Analytics & Research to buy or invest in this industry, sector or companies operating in this sector or industry and is also not a recommendation to enter into any transaction in this industry or sector in any manner whatsoever.

This report has to be seen in its entirety; the selective review of portions of the report may lead to inaccurate assessments. All forecasts in this report are based on assumptions considered to be reasonable by Infomerics Analytics & Research; however, the actual outcome may be materially affected by changes in the industry and economic circumstances, which could be different from the projections.

Nothing contained in this report is capable or intended to create any legally binding obligations on the sender or Infomerics Analytics & Research which accepts no responsibility, whatsoever, for loss or damage from the use of the said information. Infomerics Analytics & Research is also not responsible for any errors in transmission and specifically states that it, or its directors, employees, parent company – Infomerics Valuation & Rating, or its directors, employees do not have any financial liabilities whatsoever to the subscribers/users of this report. The subscriber/user assumes the entire risk of any use made of this report or data herein. This report is for the information of the authorized recipient in India only and any reproduction of the report or part of it would require explicit written prior approval of Infomerics Analytics & Research Private Limited

Infomerics Analytics & Research shall reveal the report to the extent necessary and called for by appropriate regulatory agencies, viz., SEBI, RBI, Government authorities, etc., if it is required to do so. By accepting a copy of this Report, the recipient accepts the terms of this Disclaimer, which forms an integral part of this Report.

Table of Contents

Sections	Title	Page
	List of Abbreviations	4
1	Global Macroeconomic Scenario	6
	Global GDP Growth Scenario	7
	Historical GDP Growth Trends	8
	GDP Growth Across Major Regions	9
	Global Economic Outlook	11
2	India's Macroeconomic Scenario	13
	Gross Domestic Product (GDP)	13
	Gross Value Added (GVA)	16
	Consumer Price Index (CPI)	17
	India Per Capita GDP Forecast	18
	Private Final Consumption Expenditure (PFCE)	19
	Index of Industrial Production (IIP) Growth	20
	Overview on Key Demographic Parameters	22
	Union Budget FY25–26 Highlights	27
	Concluding Remarks about Macroeconomic Scenario	29
3	Industry Definition and Scope – Robotic Solar Panel Cleaning and Operations & Maintenance (O&M) Industry	
4	Market Segmentation	32
5	Global and Indian Industry Outlook	34
	Global Robotics Industry	34
	Global Renewable Power Sector	41
	Global Solar Energy	42

	Global Solar Panel Operations and Management	48
	Global Robotic Solar Cleaning Market	54
	India Solar Market	55
6	Market Dynamics	
	Key Growth Drivers	57
	Market Restraints	61
7	Government Initiatives and Policy Support	64
8	Technology & Digital Transformation	66
9	PESTLE Analysis of the Industry	69
10	Competitive Landscape	72
	Key Factors shaping Competition	73
	Competitive Strategies	75
	Barriers to Entry	77
	Consolidation Trend	79
	Key Industry Players	81
	Company Positioning – Aegeus Technologies Limited	85
	SWOT Analysis	87
9	Future Outlook	89

List of Abbreviations

AD/CVD - Anti-Dumping / Countervailing Duty

AI - Artificial Intelligence

AI/ML – Artificial Intelligence / Machine Learning

AMC – Annual Maintenance Contract

APAC — Asia-Pacific

AR – Augmented Reality

BI - Business Intelligence

BIM – Building Information Modeling

BNEF – Bloomberg New Energy Finance

CAGR – Compound Annual Growth Rate

CAPEX – Capital Expenditure

CE – Conformité Européenne (European Conformity)

Européenne / CE/ISO Conformité for International Organization Standardization

CERC – Central Electricity Regulatory Commission (India)

COVID – Coronavirus Disease

CPI – Consumer Price Index

CUF – Capacity Utilization Factor

CY - Calendar Year

DISCOM – Distribution Company

DPDP – Digital Personal Data Protection (Act, 2023 - India)

ECPA – Energy Conservation and Production Act (US)

EPC – Engineering, Procurement, and Construction

EPC/O -Engineering, Procurement, Construction and Operations

ESG Environmental, Social, Governance

EU – European Union

EV – Electric Vehicle

FE – Front End / Foreign Exchange (depends **PV** – Photovoltaic on context)

LOTUS – Localized Operation of Thermal and Utility Systems (context: energy projects; can also be product-specific acronym)

MEA – Middle East and Africa

MEDA – Maharashtra Energy Development Agency (India)

MENA - Middle East and North Africa

ML - Machine Learning

MNRE - Ministry of New and Renewable Energy (India)

MOSPI – Ministry of Statistics Programme Implementation (India)

MSME - Micro, Small, and Medium Enterprises

MW - Megawatt

NSM – National Solar Mission (India)

OEM – Original Equipment Manufacturer

OPEX – Operational Expenditure

PE – Private Equity / Price-to-Earnings (ratio, context-dependent)

PESTLE – Political, Economic, Social, Technological, Legal, Environmental (framework)

PFCE Private Final Consumption Expenditure

PIB – Press Information Bureau (India)

PLF – Plant Load Factor

PLFS – Periodic Labour Force Survey (India)

PLI – Production Linked Incentive (Scheme – India)

PM – Prime Minister / Project Manager (context-specific)

PMI – Purchasing Managers' Index

and **PPA** – Power Purchase Agreement

PPP _ Public-Private Partnership Purchasing Power **Parity** (contextdependent)

QR – Quick Response (code)

FRE – Free Renewable Energy (rare; confirm context—also can mean Forward Rate of Exchange)

FX – Foreign Exchange

FY - Financial Year

GDP – Gross Domestic Product

GNDI – Gross National Disposable Income

GST – Goods and Services Tax (India)

GVA – Gross Value Added

GW - Gigawatt

IEA – International Energy Agency

IEC – International Electrotechnical Commission

IFR – International Financial Reporting (standards)

II – Industry 2.0 (depends; could also be Investment Income — clarify in report)

II/III – Industry 2.0 / Industry 3.0 (context-specific)

III – Industry 3.0 / Phase III (context-specific)

IIP - Index of Industrial Production

IIT - Indian Institute of Technology

IMF - International Monetary Fund

INR – Indian Rupee

IP – Intellectual Property

IPO - Initial Public Offering

IRENA – International Renewable Energy Agency

IRR - Internal Rate of Return

ISO – International Organization for Standardization

ISO/TC – International Organization for Standardization / Technical Committee

IV – Current-Voltage (Electrical term)

JA – Japan Agricultural Cooperatives (common usage) / Job Analysis (contextspecific)

JNNSM – Jawaharlal Nehru National Solar Mission (India)

KUSUM – Kisan Urja Suraksha evam Utthaan Mahabhiyan (India Solar Scheme)

LATAM – Latin America

LCOE – Levelized Cost of Energy

LFPR – Labour Force Participation Rate

RBI - Reserve Bank of India

RESCO – Renewable Energy Service Company

ROI – Return on Investment

SAE – Society of Automotive Engineers

SB – Sovereign Bonds / State Bank (context-specific)

SCADA – Supervisory Control and Data Acquisition

SCADA/O – Supervisory Control and Data Acquisition / Operations

SCARA – Selective Compliance Assembly Robot Arm

SEBI – Securities and Exchange Board of India

SECI - Solar Energy Corporation of India

SERC – State Electricity Regulatory Commission (India)

SLA – Service Level Agreement

SWOT – Strengths, Weaknesses, Opportunities, Threats

TAM - Total Addressable Market

TASE - Tel Aviv Stock Exchange

TCO – Total Cost of Ownership

TW - Terawatt

UAE – United Arab Emirates

US – United States

USA – United States of America

USD - United States Dollar

WEO – World Energy Outlook (IEA Publication)

1. Global Macroeconomic Scenario

The global economy is projected to experience a deceleration in growth, with global GDP expanding by 2.8% in CY 2025, down from 3.3% in CY 2024. This slowdown is attributed to escalating trade tensions, particularly due to new U.S. tariffs, and heightened policy uncertainties. Global headline inflation is expected to decline to 4.3% in CY 2025 and further to 3.6% in CY 2026, as inflationary pressures ease across advanced economies, aided by tighter monetary policy, improved labour market conditions, and the resolution of supply disruptions. However, global trade growth is forecasted to slow significantly to 1.7% in CY 2025, reflecting the effects of escalating trade barriers and geopolitical instability.

In China, economic prospects remain constrained as the IMF downgraded its CY 2025 GDP growth forecast to 4.0%, due to persistent challenges in the real estate sector, weak consumer demand, and trade-related pressures. In Europe, growth is expected to stagnate, with Germany's GDP forecast at 0.0% in CY 2025, amidst trade disruptions and domestic weaknesses. The EU is actively seeking to address these challenges through renewed trade dialogue with the U.S.

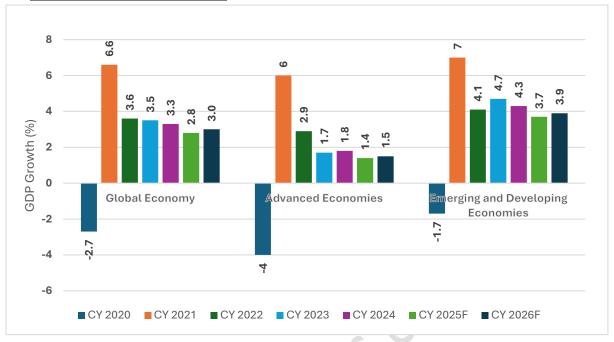
Meanwhile, India continues to show resilience, with the IMF projecting stable real GDP growth of 6.2% in CY 2025, followed by a slight uptick to 6.3% in CY 2026. This is supported by robust rural consumption and sustained infrastructure investment. The IMF notes that India remains one of the fastest-growing major economies, driven by favourable demographics, expanding digital infrastructure, and rising investment activity. Consumer price inflation in India is projected to moderate to 4.2% in CY 2025, staying within the Reserve Bank of India's (RBI) target range of 2–6%, which helps maintain purchasing power and economic stability. The IMF also highlights the importance of continued structural reforms in India, particularly in labour markets, logistics, and capital formation, to sustain medium-term growth momentum.

Overall, while inflation is declining globally, the economic outlook remains clouded by geopolitical uncertainty, trade fragmentation, and region-specific structural challenges. However, India's relative macroeconomic stability, demographic advantage, and ongoing investment cycle place it in a strong position amid global headwinds.

1.1 Global GDP Growth Scenario

The global economy began to recover from its lowest levels following the lifting of lockdowns in 2020 and 2021. The pandemic-induced lockdown was a key factor that severely disrupted economic activities, leading to a recession in CY 2020, where global GDP contracted by -2.7%.

In CY 2021, supply chain disruptions significantly impacted both advanced economies and low-income developing economies. The rapid spread of the Delta variant and the threat of new variants in mid-2021 further heightened uncertainty in the global economic environment.

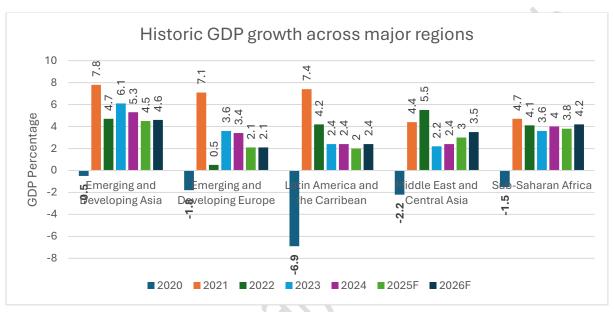

Global economic activity saw a sharper-than-expected slowdown in CY 2022. The highest inflation in decades, observed in 2022, forced most central banks to tighten their monetary & fiscal policies. Russia's invasion of Ukraine exacerbated global food supply issues, further increasing the cost of living.

Despite initial resilience in early CY 2023, marked by a rebound from the pandemic and progress in curbing inflation from the previous year's highs, the situation remained precarious. Economic activity continued to lag its pre-pandemic trajectory, especially in emerging markets and developing economies, leading to widening regional disparities. Several factors impeded recovery, including the lasting impacts of the pandemic, geopolitical tensions, tightening monetary policies to combat inflation, reductions in fiscal support amid high debt levels, and extreme weather conditions. As a result, global growth slowed from 3.6% in CY 2022 to 3.5% in CY 2023.

The global economy maintained moderate momentum in CY 2024, with real GDP growth estimated at 3.3%, supported by easing inflationary pressures, recovering supply chains, and resilient consumer demand in some major economies. Advanced economies, particularly the U.S., benefitted from strong labour markets and improved private consumption. However, growth remained uneven across regions, with emerging markets facing tighter financial conditions and subdued export demand. Inflation declined faster than anticipated in many regions, enabling some central banks to consider gradual monetary easing by the end of the year.

1.2 Historical GDP Growth Trends

F - Forecast, Source - IMF World Economic Outlook April 2025


Note: Advanced Economies and Emerging & Developing Economies are as per the classification of the World Economic Outlook (WEO). This classification is not based on strict criteria, economic or otherwise, and it has evolved over time. It comprises of 40 countries under the Advanced Economies including the G7 (the United States, Japan, Germany, France, Italy, the United Kingdom, and Canada) and selected countries from the Euro Zone (Germany, Italy, France etc.). The group of emerging market and developing economies (156) includes all those that are not classified as Advanced Economies (India, China, Brazil, Malaysia etc.)

In the current scenario, global GDP growth is projected to decelerate to 2.8% in CY 2025, reflecting mounting economic pressures across both advanced and emerging markets. This marks a significant slowdown driven by intensifying trade fragmentation, the impact of new U.S. tariffs, and elevated geopolitical tensions. Structural weaknesses such as the ongoing real estate crisis in China, stagnant growth in the Eurozone, and tight financial conditions in major economies are expected to weigh heavily on global output. Additionally, stress in housing and banking sectors, coupled with subdued industrial activity, is contributing to a muted growth outlook. On the inflation front, the IMF projects global headline inflation to decline to 4.3% in CY 2025, continuing a disinflationary trend as energy prices stabilize and supply-side disruptions ease. The softening of labour markets—reflected in lower job vacancy rates and modest increases in unemployment—is also expected to help reduce core inflation. This provides room for some central banks to initiate cautious interest rate cuts, although the broader economic outlook remains uncertain due to persistent global risks.

1.3 GDP Growth Across Major Regions

GDP growth across major global regions—including Europe, Latin America & the Caribbean, Middle East & Central Asia, and Sub-Saharan Africa—continues to display varied trajectories. While some regions are stabilizing post-pandemic, others remain challenged by structural and cyclical issues. The global outlook presents a mixed scenario, with emerging economies continuing to outperform advanced economies.

Source-IMF World Economic Outlook April 2025 update.

Note: The number of countries included in each region based on the IMF's classification of Emerging and Developing Economies. Emerging and Developing Asia includes 30 countries, such as India, China, Indonesia, Thailand, and Vietnam. Emerging and Developing Europe includes 15 countries, including Poland, Romania, Russia, and Türkiye. Latin America and the Caribbean include 33 countries, such as Brazil, Mexico, Argentina, Chile, and Colombia. The Middle East and Central Asia include 32 countries, including Saudi Arabia, UAE, Iran, Egypt, and Pakistan. Sub-Saharan Africa includes 45 countries, such as Nigeria, South Africa, Kenya, Ghana, and Ethiopia.)

In Emerging and Developing Asia, growth is projected to moderate from 5.3% in CY 2024 to 4.5% in CY 2025, before recovering slightly to 4.6% in CY 2026. India is expected to grow at 6.2% in CY 2025, supported by resilient rural consumption and sustained infrastructure investments, though lower than 6.5% growth recorded in CY 2024. In contrast, China's growth is likely to decelerate to 4.0% in CY 2025, amid persistent real estate concerns and weak domestic demand.

Sub-Saharan Africa is projected to grow at 3.8% in CY 2025, slightly below the 4.0% growth in CY 2024, with a further improvement to 4.2% in CY 2026. The recovery is being aided by improved weather conditions and better functioning supply chains.

In the Middle East and Central Asia, the economy is forecasted to expand at 3.0% in CY 2025, up from 2.4% in CY 2024, and further strengthen to 3.5% in CY 2026, driven by stabilization in oil production and ongoing economic reforms.

For Latin America and the Caribbean, modest growth of 2.0% is forecast for CY 2025, holding steady from CY 2024, with expectations of a rebound to 2.4% in CY 2026, helped by stronger macroeconomic management across key economies.

Emerging and Developing Europe remains subdued, with growth estimated at 2.1% in CY 2025, down from 3.4% in CY 2024, expected to be stable at 2.1% by CY 2026. The region continues to face structural manufacturing challenges, particularly in major economies like Germany.

Overall, while global growth is expected to remain steady, regional disparities persist, influenced by a combination of domestic challenges, external geopolitical tensions, and fluctuating commodity prices.

1.4 Global Economic Outlook

At the midpoint of the year, so far in 2025 the global economy continues to exhibit mixed performance, with divergence in outcomes across regions due to differences in economic growth, inflation dynamics, and policy responses. The global GDP growth is projected at 2.8% in CY 2025, down from an estimated 3.3% in CY 2024. While short-term prospects have improved since early 2024 due to easing inflation and gradual loosening of monetary policy in several regions, the broader environment remains challenging. Structural headwinds, such as tighter credit conditions, supply-side bottlenecks, and lingering geopolitical risks, are keeping global growth below historical averages.

The United States has continued to outperform other advanced economies, with growth projected at 1.8% in 2025, though slightly down from 2.8% in 2024, as the economy absorbs the lagged effects of previous monetary tightening and persistent inflation. In contrast, the Euro Area remains subdued, with GDP growth expected to 0.8% in 2025, supported by the European Central Bank's first-interest rate cuts since 2019 (implemented in June 2024) and stronger domestic demand. However, countries like Germany, France, and Italy continue to struggle due to weak manufacturing performance, whereas Greece and Spain have benefited from robust tourism activity.

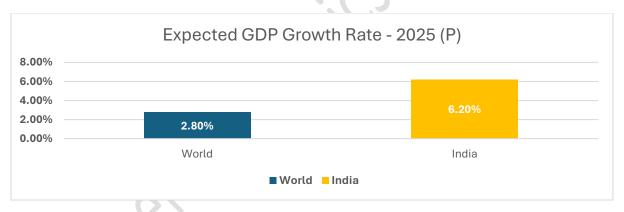
In China, growth has held up at a projected 4.0% for CY 2025, supported by targeted stimulus and a gradual recovery in the real estate sector. Growth in the rest of Asia is also benefiting from a revival in global trade and domestic demand. India remains one of the strongest performers globally, with GDP growth forecasted at 6.2% in 2025, supported by robust consumption, capital investment, and favourable demographics.

In Latin America and the Caribbean, growth is more uneven. Larger economies like Brazil and Mexico are seeing moderate expansions, but the overall regional outlook is weaker, with GDP growth forecast at 2.0% in 2025, due to external headwinds, commodity price volatility, and political uncertainty. Meanwhile, Sub-Saharan Africa's growth is expected to slow slightly to 3.8%, as global financial conditions tighten, and oil-exporting nations face declining revenues. The Middle East and North Africa (MENA) region is also seeing tempered prospects, with growth revised down to 2.6%, influenced by lower oil prices and ongoing geopolitical pressures.

Globally, industrial production has remained sluggish through the first half of 2025, constrained by high interest rates, trade fragmentation, and lingering supply chain disruptions. However, a mild recovery is anticipated in the second half of the year as global trade stabilizes and domestic demand for goods strengthens. Central banks in several advanced economies—including the Eurozone, Switzerland, Sweden, and Canada—have begun cutting rates to support demand, though inflation trends remain uneven. Disinflation

has progressed slower than expected, particularly in services and wage-heavy sectors, making monetary easing cautious and data-dependent.

Overall, the global economy appears to be stabilizing, but growth in CY 2025 remains below historical averages. Advanced economies continue to grow modestly under the weight of tight policies and weak external demand, while emerging markets, particularly in Asia, show stronger but slowing momentum. The outlook for the remainder of 2025 depends significantly on geopolitical developments, the trajectory of inflation, and the pace of monetary easing.



2. India's Macroeconomic Scenario

2.1 Gross Domestic Product (GDP)

India Expected to Grow at Twice the Pace of Global Economic Growth

The global economy continues to face persistent challenges, including the lingering effects of the COVID-19 pandemic, heightened geopolitical tensions, and climate-related disruptions that have affected energy and food supply chains. Global real GDP growth is projected at 2.8% in 2025, indicating a moderation in global momentum. In contrast, India's real GDP is projected to grow at 6.2% in 2025, continuing its trend of significantly outpacing global averages and reaffirming its position as the fastest-growing major economy. This implies that India is expected to grow at more than twice the pace of global GDP, supported by strong domestic demand, structural reforms, and increased infrastructure investment. India's resilience among the G20 economies further strengthens its role as a key driver of global economic growth in the coming years.

Global and India Growth Outlook Projections (Real GDP growth)

Notes: P-Projection; Source: IMF – World Economic Outlook, April 2025

India's Economic Growth Momentum Remains Strong - Surpassed USD 4 Trillion.

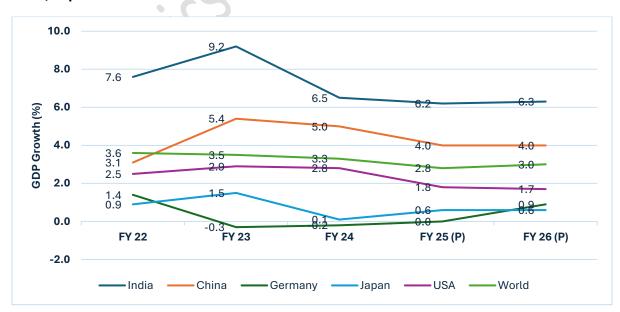
In FY 2024-25, India was the fifth-largest economy globally, with an estimated real Gross Domestic Product (GDP) at constant prices of INR 184.88 lakh crore, against the Provisional Estimate of GDP for the year 2023-24 of INR 173.82 lakh crore registering a GDP growth rate of 6.4% as compared to 8.2% in FY 2023-24. Since FY 2005, India's GDP growth has consistently outpaced global economic growth, often growing at nearly twice the global average, and this trend is expected to continue over the medium term.

Source: MOSPI, first advance estimates of GDP 2024-25 released on January 7th, 2025

In June 2025, India became the fourth-largest economy in the world and retained its position as the fastest-growing major economy. The country is projected to become the world's third largest economy by 2030, with an estimated GDP of USD 7.3 trillion.

Source: PIB, Press Release - India Becoming an Economic Powerhouse posted on June 16, 2025.

GDP Growth Rate Projections for India


GDP growth projections by Government of India and other agencies are summarised below:

	Estimated GDP Growth Rate		
	FY 25E	FY 26E	FY 27E
Ministry of Finance, GOI	6.4%	6.3%-6.8%	N.A.
IMF*	6.2%	6.3%	N.A.
RBI#	6.6%	6.5%	N.A.
National Statistical Office (NSO)@	6.4%	N.A.	N.A.
PHDCCI@	6.5%	6.7%	6.7%
S&P Global@	6.8%	6.5%	6.8%
Morgan Stanley@	6.3%	6.5%	6.5%
Asian Development Bank#	6.5%	6.7%	N.A.
Moody's Agency	6.1%	N.A.	N.A.
Fitch Ratings@	6.3%	6.5%	6.3%

^{*} Source: World Economic Outlook Update April 2025

@ Data is updated as of 28th March 2025, #updated as of 10th April 2025

India, Top 4 Global Economies GDP Growth Forecast

Note: P = Projections, Source: IMF World Economic Outlook April 2025 update.

In September 2024, India achieved a significant milestone by overtaking Japan to become the third most powerful nation in the Asia-Pacific region, as per the Asia Power Index 2024. India's overall score rose to 39.1, reflecting a 2.8-point increase from the previous year, driven by growing influence across economic, military, and diplomatic dimensions.

Key factors behind India's rise include its strong economic performance, expanding and youthful workforce, and increasing strategic engagement across the region. India's Economic Capability improved significantly, supported by its position as the world's third-largest economy in terms of purchasing power parity (PPP). Additionally, a notable increase in its Future Resources score highlights the demographic advantage that is expected to sustain its growth trajectory in the coming years.

2.2 Gross Value Added (GVA)

Gross Value Added (GVA) is the measure of the value of goods and services produced in an economy. GVA gives a picture of the supply side whereas GDP represents consumption.

Industry and Services sector leading the recovery charge

- India's economy demonstrated robust growth across various sectors. The gap between GDP and GVA growth turned positive. The positive gap between GDP and GVA growth indicates robust tax collections contributing to GDP growth.
- India's sector-wise economic performance in FY 2024–25 reveals a shift in momentum across its primary, secondary, and tertiary sectors, with notable differences compared to the previous fiscal year.
- The Primary Sector—comprising agriculture, livestock, forestry, fishing, and mining & quarrying—registered a growth of 3.6% in FY25, showing a notable improvement from the 2.1% growth in FY24. This uptick can be attributed to stronger performance in agriculture and allied activities, along with moderate gains in mining and quarrying. However, erratic monsoon patterns and rising input costs may have constrained agricultural output during the year.
- In contrast, the Secondary Sector—which includes manufacturing, electricity, gas, water supply & other utilities, and construction—recorded a solid growth of 6.5% in FY25, though lower than the impressive 9.7% growth seen in the previous year. This resilient performance was primarily driven by a notable recovery in manufacturing and robust momentum in infrastructure-related segments like construction and utilities.
- The Tertiary Sector or services sector posted 7.2% growth in FY25, slightly lower than the 7.6% achieved in FY24, yet it remained a major pillar of overall economic growth. Strong performances were observed in trade, hotels, transport, financial services, real estate, and professional services. However, public administration and defence services saw more modest growth, slightly dampening the overall momentum in this segment.
- Overall, growth in India's real Gross Value Added (GVA) in FY25 was primarily driven by the resurgence of the secondary sector and sustained strength in key segments of the services sector, even as the primary sector showed signs of moderation.

Sectoral Growth (Y-o-Y % Growth) - at Constant Prices

Sector-wise growth in GVA at constant (2011-12) prices (in %)	FY 2024	FY 2025
Primary	2.1	3.6
Secondary	9.7	6.5
Tertiary	7.6	7.2

Source: MOSPI, First advance estimates of GDP 2024-25, released on January 7th, 2025

2.3 Consumer Price Index (CPI)

Inflation Stable Inflationary Environment

In fiscal year 2025 (FY25), India's General Index inflation, as measured by the Consumer Price Index (CPI), averaged 4.6%, marking the lowest annual inflation rate since 2018–19. This moderation in inflation reflects a significant improvement in the country's price stability post-COVID. In March 2025, CPI Inflation stood at 3.34%, the lowest monthly rate since August 2019, indicating sustained disinflationary momentum in recent months.

Source: - RBI, Annual Report-Inflation, Money and Credit Dated May 29th, 2025

Several key factors contributed to this decline in inflation:

The Reserve Bank of India (RBI) pursued a pro-growth monetary policy, aiming to strike a balance between supporting economic recovery and containing inflation. In parallel, the government actively intervened in food markets, particularly by augmenting buffer stocks of essential commodities and releasing them strategically to stabilize prices. These coordinated efforts helped ease supply-side pressures, especially on food inflation.

Looking ahead, projected CPI inflation for FY26 to average around 4%, signalling continued focus on maintaining price stability. In support of this trajectory, the RBI recently announced a cut in the repo rate, which is expected to result in a more accommodative monetary policy stance in the coming months. This environment of low inflation and easing interest rates may provide a favourable backdrop for economic expansion in the near term.

India's CPI Inflation Monthly

Source: MOSPI

2.4 India Per Capita GDP Forecast

Per capita GDP growth for India is estimated at 9.19 % CAGR between FY 2025-FY 2030. Increased individual incomes are expected to create additional discretionary spending, which may be beneficial for the sector.

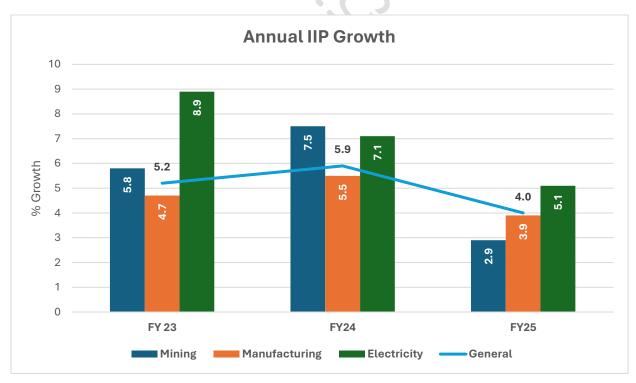
Note: E = Estimated, P = Projected

Source: IMF Data Mapper, World Economic Outlook April 2025, India, GDP Per Capita

2.5 Private Final Consumption Expenditure (PFCE)

Private Final Consumption Expenditure (PFCE) represents the total spending by resident households on final consumption of goods and services, serving as a key indicator of consumer demand and overall economic well-being. It reflects the extent of household consumption and plays a crucial role in driving GDP growth. In FY2025, PFCE at constant prices rose to 56.7% of GDP, up from 56.1% in FY2024, indicating a gradual improvement in household spending patterns. This increase suggests stronger consumer confidence, supported by factors such as easing inflation, improving income levels, and a favourable consumption environment.

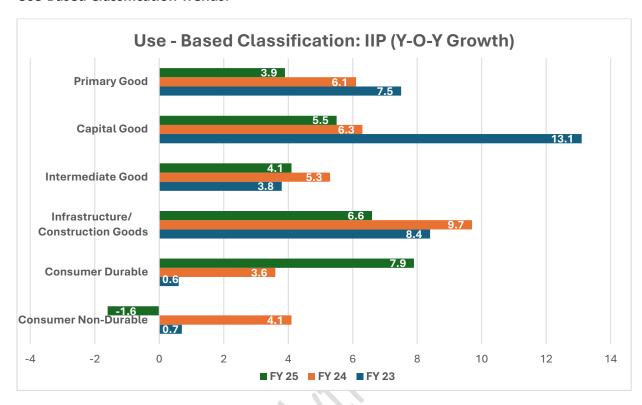
Source: - MOSPI, Second Advance Estimates of GDP 2024-25 dated February 28,2025


2.6 IIP Growth - Index of Industrial Production

As per the Index of Industrial Production (IIP), the industrial sector grew by 4.0% in FY 2025, moderating from 5.9% in FY 2024 and 5.2% in FY 2023. This deceleration in overall IIP growth in FY 2025 reflects a softening of industrial momentum amidst global headwinds and tighter financial conditions.

Among key components:

- Manufacturing (which holds a 77.6% weight in IIP) registered a slower growth of 3.9% in FY 2025, compared to 5.5% in FY 2024 and 4.7% in FY 2023.
- Mining growth also moderated sharply to 2.9% in FY 2025 from 7.5% in FY 2024 and 5.8% in FY 2023.
- **Electricity** growth remained relatively stable at 5.1% in FY 2025, slightly down from 7.1% in FY 2024 and significantly lower than 8.9% in FY 2023.


This slowdown indicates tightening domestic demand and spillover effects from a weaker global industrial cycle.

Source: Ministry of Statistics & Programme Implementation (MOSPI)

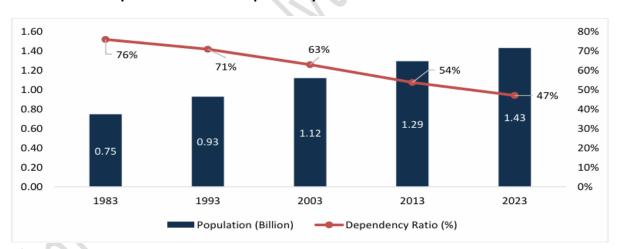
Use-Based Classification Trends:

Source: Ministry of Statistics & Programme Implementation (MOSPI)

According to the use-based classification:

- Capital Goods segment growth slowed to 5.5% in FY 2025, down from a high of 13.1% in FY 2023 and 6.3% in FY 2024, indicating a reduction in investment momentum.
- Primary Goods also witnessed slower growth at 3.9%, compared to 6.1% in FY 2024 and 7.5% in FY 2023.
- Intermediate Goods rebounded modestly to 4.1% in FY 2025, up from 3.8% in FY 2023, although still lower than 5.3% in FY 2024.
- Infrastructure/Construction Goods slowed to 6.6% in FY 2025 from 9.7% in FY 2024 and 8.4% in FY 2023, pointing to softening construction and infrastructure activity.
- Consumer Durables grew significantly by 7.9%, rebounding from 3.6% in FY 2024 and 0.6% in FY 2023, indicating improved demand in consumer electronics and appliances.
- In contrast, Consumer Non-Durables contracted by 1.6% in FY 2025, reversing the 4.1% growth in FY 2024, likely reflecting subdued rural and essential goods demand.

The divergence in growth across segments suggests an uneven industrial recovery in FY 2025. While certain consumer categories have rebounded, investment-related and primary sectors remain under pressure.


2.7 Overview on Key Demographic Parameters

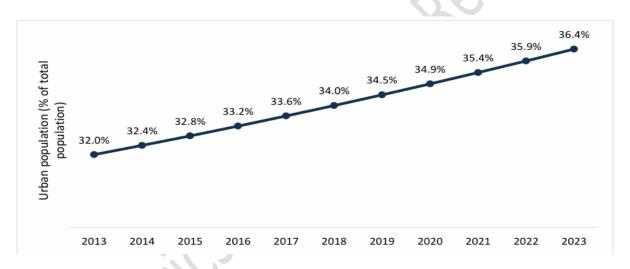
2.7.1 Population growth and Urbanization

India's economic growth and expanding private consumption are intrinsically linked to its demographic and urbanization trends. According to the World Bank, India's population is estimated to have reached approximately 1.44 billion in 2024, reaffirming its position as the world's most populous country, ahead of China. This continued growth reflects an expanding labour force and consumer base, both of which are critical to sustaining long-term economic development.

A key metric in demographic analysis—the age dependency ratio, defined as the ratio of dependents (individuals aged below 15 or above 64) to the working-age population (15–64 years)—has been on a downward trajectory for several decades. From a high of 76% in 1983, the dependency ratio declined to 47% in 2023 and is estimated at 50.2% in 2024. This decline signifies that for every 100 working-age individuals, there are only about 50 dependents, indicating a favourable demographic dividend. A greater share of the population is now within the working-age group, potentially contributing to enhanced economic productivity and income generation.

Trend of India Population vis-à-vis dependency ratio

Source: World Bank Database


However, a parallel trend is emerging in the form of a rising old-age dependency ratio—the proportion of individuals aged 65 and above relative to the working-age population. This figure has gradually increased, reaching 10.4% in 2024, suggesting the onset of an aging demographic shift. This highlights the growing need for robust healthcare systems, pension reforms, and social security mechanisms to address future challenges associated with an aging population.

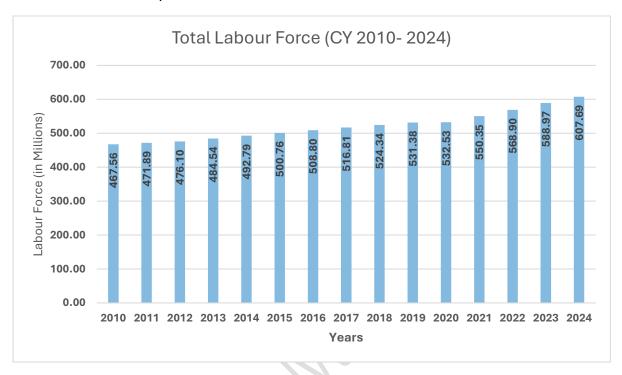
India's youthful demographic remains one of its most significant advantages. With a median age of around 29 years, India has one of the youngest populations globally. Nearly one-fifth of the world's youth resides in India, and as millions enter the workforce each year, this demographic bulge offers enormous potential—provided it is met with adequate job creation, education, and skills training.

Urbanization, too, is transforming India's socio-economic fabric. The urban population rose from 413 million in 2013 (32% of total population) to 519.5 million in 2023 (36.4%), and further to approximately 535 million in 2024 (36.9%), according to World Bank estimates. This rapid growth in urban areas underscores the need for sustainable urban planning, investment in infrastructure, and development of smart cities to accommodate and benefit from the shifting population dynamics.

Urbanization Trend in India

Source: World Bank Database

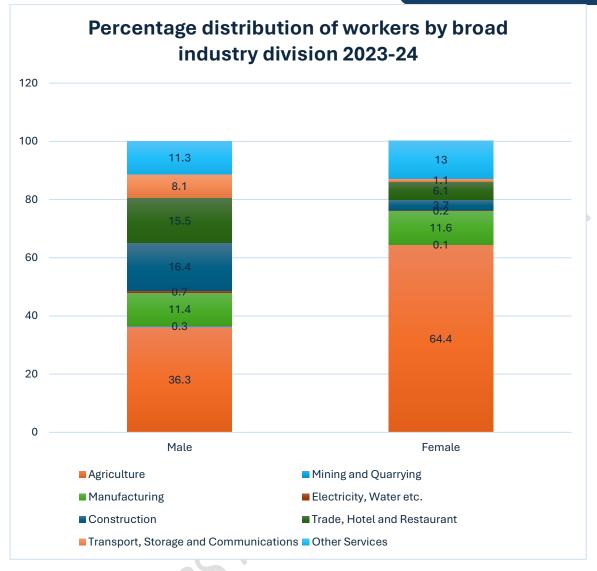
2.7.2 Labour Force in India


India's labour force has experienced significant growth over the past decade. In 2010, the total labour force was approximately 467.56 million. By 2024, this number had increased to 607.69 million, reflecting a Compound Annual Growth Rate (CAGR) of 1.89% over the 14-year period.

This upward trend underscores the expanding working-age population and the country's ongoing economic development. However, it also highlights the need for effective employment policies to ensure that the growing labour force is adequately absorbed into productive sectors.

The labour force participation rate (LFPR) has also seen fluctuations, influenced by various socio-economic factors. As of 2024, the LFPR stood at 45.1%, indicating the percentage of the working-age population that is either employed or actively seeking employment.

These statistics emphasize the importance of implementing strategies that not only create employment opportunities but also enhance the quality and inclusivity of jobs across different sectors of the economy.



Source: World Bank Database

2.7.3 Breakdown of Employment by Sector

According to the Periodic Labour Force Survey (PLFS) 2023–24, the employment distribution across various sectors exhibits distinct gender-based patterns. A significant portion of male workers are engaged in agriculture, followed by notable participation in construction, manufacturing, and trade-related activities. In contrast, female workers are predominantly employed in agriculture, with considerable involvement in manufacturing and other services sectors. While female representation in trade and construction is lower compared to males, Additionally, a substantial proportion of employed women are self-employed, often contributing as unpaid helpers in household enterprises or operating small businesses, indicating a reliance on informal employment avenues.

Source: Annual Report 2023-24, Periodic Labour Force Survey

2.7.4 Labour Laws in India

Labour is a subject under the Concurrent List of the Indian Constitution, enabling both the Central and State Governments to frame relevant legislation. In a major reform initiative, the Government of India has consolidated 29 existing central labour laws into four comprehensive Labour Codes to simplify compliance, reduce multiplicity of definitions, and promote transparency. These include:

- The Code on Wages, 2019
- The Industrial Relations Code, 2020
- The Code on Social Security, 2020
- The Occupational Safety, Health and Working Conditions Code, 2020

As of 31st December 2024, the Central Government and a majority of States/Union Territories had pre-published draft rules under all four Labour Codes. Regional consultations were held to align state-level rules with the central framework. Once fully implemented, these Codes are expected to harmonize the needs of workers and industry, facilitate ease of doing business, and support employment generation.

Additionally, the Ministry of Labour & Employment is revamping the Shram Suvidha Portal to improve regulatory compliance and has launched the e-Shram Portal to register workers from the unorganised sector. Over 30 crore registrations have been completed, and the portal has been integrated with 12 key social welfare schemes, enabling targeted delivery of benefits.

2.7.5 Disposable Income and Consumer Spending

Gross National Disposable Income (GNDI) represents the total income available to a nation's residents for consumption and saving after accounting for income transfers with the rest of the world. In FY24, Per capita GNDI grew by 9.85%, followed by a moderate growth of 8.05% in FY25. This steady increase indicates that households and businesses had more income at their disposal, which is critical for supporting both consumption and savings—key components of economic resilience and expansion.

The rise in GNDI has translated into higher consumer spending, as reflected in the growth of Private Final Consumption Expenditure (PFCE), which measures the total value of goods and services consumed by households. Per Capita PFCE grew by 8.04% in FY24 and further accelerated to 10.09% in FY25, highlighting strong consumer confidence and robust domestic demand.

Trend of Per Capita GNDI and Per Capita PFCE (Current Price)

Note: Data mentioned is in Rs. Crore, FE – Final Estimates, FRE – First Revised Estimates, SAE – Second Advanced Estimate; Source: MOSPI

2.8 Union Budget FY25-26 Highlights

The **Union Budget FY 2025–26**, presented by Finance Minister Nirmala Sitharaman, introduces a comprehensive set of measures aimed at stimulating economic growth, enhancing infrastructure, and fostering inclusive development. With a focus on sectors such as agriculture, MSMEs, infrastructure, innovation, and exports, the budget seeks to create a conducive environment for sustained economic expansion.

• Capital Expenditure and Infrastructure Development

The government has earmarked a substantial ₹11.21 lakh crore (3.1% of GDP) for capital expenditure in FY 2025–26. This allocation is directed towards infrastructure projects, including rural development, manufacturing, and skill-building initiatives. Notably, the Urban Challenge Fund has been established with a corpus of ₹1 lakh crore, aimed at financing 25% of the cost of bankable urban infrastructure projects, thereby promoting sustainable urban development.

Support for MSMEs

Recognizing the pivotal role of Micro, Small, and Medium Enterprises (MSMEs) in India's economic landscape, the budget introduces several measures to bolster this sector. The Credit Guarantee cover has been enhanced to ₹10 crore, unlocking ₹1.5 lakh crore in additional funding for MSMEs over the next five years. Additionally, the establishment of a Fund of Funds with a ₹10,000 crore corpus aims to provide equity support to startups and potential MSMEs, focusing on high-growth sectors such as electronics and renewable energy.

• Tax Reforms and Disposable Income

To stimulate consumption and investment, the budget introduces significant tax reforms. The tax-free income threshold has been raised to ₹12 lakh, and the new tax regime offers reduced rates for higher income brackets. These changes are expected to increase disposable income, thereby encouraging higher savings and investment among the middle class.

Focus on Agriculture and Exports

The budget prioritizes agriculture as a key engine of development, with increased allocations for agricultural credit and initiatives aimed at enhancing productivity. Furthermore, measures to promote exports include the reduction of customs duties on select goods and the introduction of policies to facilitate easier market access for Indian products.

Urban Development Initiatives

A significant increase in the budget allocation for the Ministry of Housing and Urban Affairs to ₹96,777 crore reflects the government's commitment to urban development. Key initiatives include the establishment of the Urban Challenge Fund, enhanced loans under the PM SVANidhi scheme, and substantial provisions for the Pradhan Mantri Awas Yojana

and Urban Rejuvenation Mission, all aimed at improving urban infrastructure and living standards.

The Union Budget FY 2025–26 presents a balanced approach to economic growth by addressing immediate consumption needs and laying the foundation for long-term sustainability. Through targeted investments in infrastructure, support for MSMEs, tax reforms, and sector-specific initiatives, the budget aims to foster an inclusive and resilient economy. These measures are expected to create new opportunities for financial institutions, as the growing demand for investment products will provide avenues for expansion and innovation in the financial services sector.

2.9 Concluding Remarks about Macroeconomic Scenario

The major headwinds to global economic growth remain significant, with escalating geopolitical tensions, volatile global commodity prices, high interest rates, inflationary pressures, instability in international financial markets, climate change, rising public debt, and the rapid evolution of new technologies. Despite these challenges, India's economy is relatively well-positioned compared to other emerging markets. According to the latest IMF forecast, India's GDP growth is expected to be 6.2% in 2025, maintaining its position as the fastest-growing major economy globally, well above the global growth projection of 2.8%. Key positive factors for the Indian economy include continued strong domestic demand, robust government support for capital expenditure, moderating inflation, growing investments in technology, and improving business confidence.

India's strategic position as a manufacturing hub is further strengthened by government initiatives, a skilled labour force, and a dynamic startup ecosystem, all of which bolster the country's economic outlook. The ongoing reforms and focus on innovation are enabling India to seize emerging opportunities, making it a growing player in the global manufacturing landscape. In addition, several high-frequency growth indicators—such as the Purchasing Managers' Index (PMI), E-way bills, bank credit, toll collections, and GST collections—have shown a positive trajectory in FY25. The normalization of employment post-economic reopening is expected to provide further support to consumption expenditure.

Public investment is also poised to grow, with the government allocating a significant ₹11.21 lakh crore for capital expenditure in FY25. The private sector's investment intentions are showing positive signs, as evidenced by increased new project investments and a strong import of capital goods. Furthermore, rural demand is likely to improve, bolstered by healthy sowing, better reservoir levels, and the positive progress of the southwest monsoon, coupled with the government's push for infrastructure investment and other policy measures. These factors are expected to further support the investment cycle and strengthen India's economic resilience in the coming years.

3. Industry Definition and Scope – Robotic Solar Panel Cleaning and O&M Industry

The Robotic Solar Panel Cleaning and Operations & Maintenance (O&M) Industry is rapidly emerging as a mission-critical enabler of renewable energy efficiency. Automated cleaning systems integrated with remote monitoring platforms are transforming asset management by providing real-time performance insights, proactive alerts, and measurable ROI improvements. In markets such as India, rising utility-scale solar capacity, water scarcity, and investor-driven performance guarantees are accelerating adoption of robotic, sensor-driven cleaning solutions. Integrated providers offering end-to-end systems—spanning robotic devices, predictive analytics, and lifecycle service contracts—are well-positioned to capture value. As solar energy transitions into the backbone of global power generation, robotic cleaning and O&M solutions are moving from ancillary support functions to strategic levers for maximizing energy output, reducing costs, and meeting ESG-aligned sustainability goals.

No longer confined to manual, labour-intensive processes, solar panel cleaning and maintenance now underpin asset efficiency, plant-level yield optimization, and sustainable operations. The industry spans a multidimensional spectrum—ranging from autonomous cleaning units and waterless robotic systems to integrated digital monitoring platforms that enhance uptime, pre-empt faults, and extend lifecycle performance. As solar capacity expands across both utility-scale and distributed projects, robotic O&M is evolving from auxiliary support into a core determinant of levelized cost of energy (LCOE) competitiveness.

In India, the O&M ecosystem is undergoing structural transformation. Installed capacity growth, performance-linked investor expectations, and deployment in arid regions facing severe water scarcity are compelling asset owners to adopt fully automated, sensor-driven cleaning systems. These combine robotic performance with predictive analytics, digital dashboards, and uptime assurance mechanisms, offering measurable value far beyond manual cleaning alternatives.

Sitting between fragmented service contractors and advanced global robotics innovators, a new cohort of Indian manufacturers and O&M integrators is filling this strategic market gap. These firms deliver end-to-end platforms that integrate robotic cleaning devices, dust-resilient modular systems, cloud-based monitoring software, and lifecycle analytics, supported through turnkey deployment and long-term service contracts. Their solutions are gaining traction across utility-scale parks, commercial rooftops, and institutional installations, especially in desert clusters and government-backed solar hubs.

Leading players differentiate themselves through the ability to:

- Integrate robotics with remote monitoring for continuous data capture and actionable intelligence.
- Issue proactive alerts to pre-empt underperformance or downtime.
- Deliver quantifiable ROI improvements across large, decentralized solar portfolios.

However, achieving global competitiveness will require deeper investments in:

- Al-driven monitoring ecosystems for predictive asset intelligence.
- Robotic fleet standardization to improve scalability.
- ESG-compliant, waterless cleaning technologies for arid geographies.
- Export-oriented expansion across global sunbelt markets.

In an environment where robotic O&M is no longer optional but a mission-critical enabler of solar asset integrity, companies that operate with integrated, tech-enabled, and compliance-driven models are best positioned to capture disproportionate value from India's renewable energy expansion and the broader global pivot toward automated, sustainability-aligned solar infrastructure.

4. Market Segmentation

The Global Robotic Solar Panel Cleaning and O&M industry is evolving into a multi-layered ecosystem, shaped by technological innovation, end-user requirements, and delivery models. Segmentation reflects the diversity of solutions — from autonomous robotic systems and waterless cleaning technologies to integrated digital O&M platforms and aftermarket support. Demand patterns vary significantly across utility-scale, commercial, institutional, and residential segments, while business models range from OEM-driven manufacturing to turnkey EPC and service-based approaches. Emerging sub-segments such as Al-driven predictive cleaning, ESG-aligned solutions, and Robot Cleaning-as-a-Service (RCaaS) highlight the industry's pivot toward sustainability, cost optimization, and performance assurance.

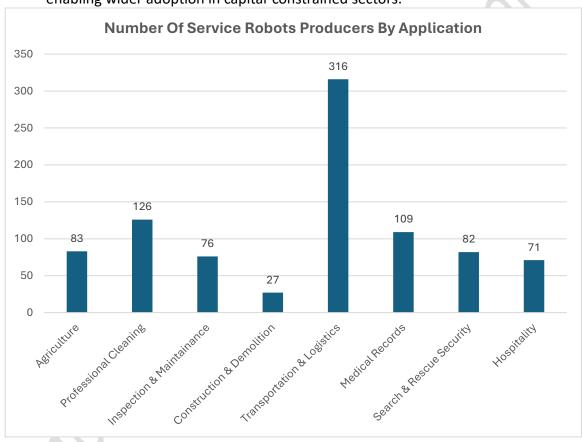
Category	Sub-Category	Details
	Robotic Cleaning Systems	 Autonomous, rail-mounted, and mobile robotic cleaning units. Dry, water-based, and waterless cleaning technologies. Modular, dust-resilient designs for utility-scale and rooftop PV.
By Type of Equipment	Integrated O&M Platforms	 Cloud-based dashboards with asset monitoring. Remote diagnostics, predictive maintenance, and lifecycle analytics. Al-driven optimization for panel tilt, cleaning frequency, and yield maximization.
	Components & Spare Parts	 Motors, brushes, microfiber rollers, battery packs, solar-powered charging docks. Aftermarket spare parts ecosystem supported by annual maintenance contracts. Lifecycle support through predictive replacements and upgrades.
	Waterless & Sustainable Cleaning Solutions	 Electrostatic dust removal and air-jet systems. Waterless robots for desert/remote solar parks. ESG-aligned cleaning solutions addressing water scarcity.
By End- Use Sector	Utility-Scale Solar Parks	 Large-scale robotic fleets for desert clusters and arid geographies. Key adoption driver: water scarcity + performance guarantees.

	Commercial & Industrial Rooftops	 Modular, lightweight robots for mid-sized solar rooftops. High demand from manufacturing plants, warehouses, and malls.
Institutional & Government Installations		 Smart campuses, airports, and public-sector solar initiatives. Preference for integrated O&M with uptime assurance contracts.
	Residential/Distributed Solar	 Compact, consumer-grade robotic cleaners for rooftop PV. Early-stage, cost-sensitive segment; growth expected with falling hardware prices.
	In-House Manufacturing & Robotics OEMs	 Large players design and produce proprietary cleaning systems. Capital-intensive, with focus on R&D and export competitiveness.
By	Turnkey EPC + O&M Providers	 End-to-end service providers offering design, deployment, and lifecycle support. Preferred for utility-scale projects with performance guarantees.
Delivery Model	Service & Aftermarket Models	 AMC-driven O&M, spare parts replacement, and lifecycle upgrades. Retrofit cleaning solutions for legacy solar installations.
	Hybrid Models	 In-house robotic design + outsourced EPC execution. Bundled digital monitoring overlays with fleet management.
	Digital Solar O&M	 IoT-enabled dashboards for remote fleet control. Real-time alerts, yield tracking, and downtime analytics.
Emerging	AI & Predictive Cleaning Systems	 Machine learning algorithms for soiling pattern detection. Optimized cleaning schedules to balance cost and energy gain.
Sub- Segments & Value- Added	ESG & Water- Conservation Solutions	 Waterless robotic systems. Carbon footprint reduction via reduced manual operations. ESG-compliant technologies for global investors.
Services	Robotics-Enabled O&M-as-a-Service (ROaaS)	 Subscription/pay-per-use bundling cleaning, vegetation mgmt., monitoring, and security. Value-added layer for mid-sized developers and C&I owners, ensuring efficiency, uptime, and ESG compliance without capex. Delivers recurring revenues, predictable contracts, and lower risk.

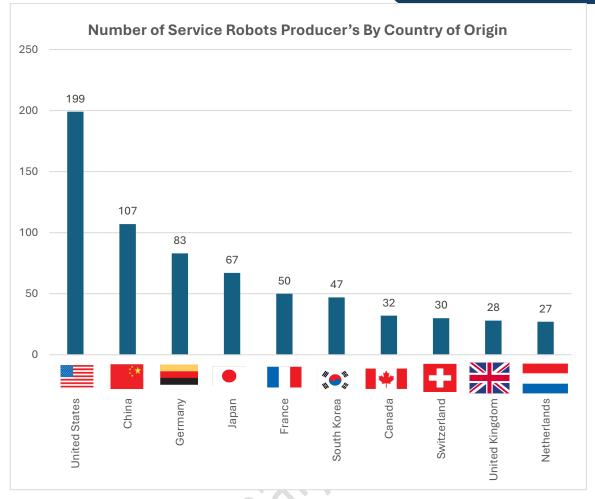
5. Global and Indian Industry Outlook

5.1 Global Robotics Industry

The global robotics industry is undergoing accelerated expansion, driven by digitalization, automation imperatives, and labour productivity challenges across both developed and emerging markets. Robotics is now broadly classified into industrial robots and service robots, with each segment demonstrating distinct market dynamics, growth drivers, and commercialization pathways. Together, they form the backbone of the Industry 4.0 transition and the services digitalization wave.


Source: IFR.org, World Robotics 2024

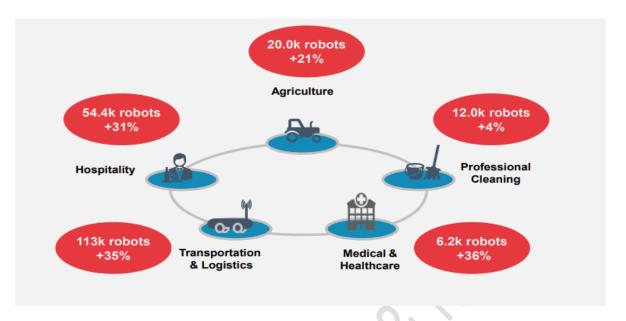
Industrial Robots are defined as automatically controlled, reprogrammable, multipurpose manipulators (ISO 8373:2021) designed for automation in industrial environments. They are deployed in automotive, electronics, metalworking, and logistics, and classified into mechanical structures such as articulated, SCARA, Cartesian, cylindrical, polar, and delta robots. Industrial robots dominate in scale, accounting for millions of installed units globally, with annual installations consistently


rising on the back of manufacturing re-shoring, collaborative robot adoption, and smart, connected automation systems. Their key investment rationale includes productivity gains, precision, energy efficiency, and resilience against systemic shocks.

• **Service Robots** are defined as robots that perform useful tasks for humans or equipment in professional or personal applications. Unlike industrial robots, service robots are highly fragmented and application-specific, ranging from logistics and cleaning to healthcare, agriculture, construction, hospitality, and defense. According to IFR, more than 900 service robot producers are active worldwide, with global professional service robot sales growing over 30% in 2023. Key growth verticals include medical robots (+36%), logistics AMRs (+35%), hospitality robots (+31%), and agricultural robots (+21%). Robots-as-a-Service (RaaS) models are gaining traction, enabling wider adoption in capital-constrained sectors.

Source: IFR.org, World Robotics 2024

Source: IFR.org, World Robotics 2024


From a geographic perspective, Europe leads in service and medical robot manufacturing, while Asia (China, Japan, South Korea) dominates industrial robot deployment in electronics and automotive sectors. North America remains a hub for deep-tech service robotics and collaborative solutions.

Standardization is central to industry scalability. ISO/TC 299 oversees robotics standards, with dedicated frameworks for safety (ISO 10218 for industrial, ISO 13482 for service), modularity, and interoperability. Increasingly, AI integration, connectivity, and human-robot collaboration are redefining both segments, creating adjacent opportunities in software, sensors, and edge intelligence.

Overall, the robotics industry presents a dual-track growth narrative: industrial robots underpin cost efficiency and scalability in global manufacturing supply chains, while service robots unlock new markets in healthcare, logistics, agriculture, and consumer applications. With double-digit growth forecasts, robotics is positioned as a structural enabler of long-term productivity, sustainability, and competitiveness worldwide.

Service Robotics by Application Groups

Source: IFR.org, World Robotics 2024

1. Agriculture

- Key Applications: Autonomous tractors, robotic harvesters, weeding and spraying robots for precision farming.
- **Impact:** Boosts yield through precision agriculture, reduces dependency on seasonal labour, optimizes input costs (water, fertilizers, pesticides).
- Enhancements: Wider integration of AI/ML and IoT sensors for soil and crop health monitoring; predictive maintenance of robotic fleets; scalable leasing models for small and mid-sized farms.

2. Professional Cleaning

- **Key Applications:** Floor scrubbing, commercial facility cleaning, airport/mall sanitation, industrial plant hygiene.
- **Impact**: Improves hygiene standards, addresses labor shortages in janitorial services, lowers operational costs in large facilities.
- **Enhancements:** Multi-functional units combining cleaning, disinfection, and asset monitoring; adoption of "robots-as-a-service" with predictive maintenance.

3. Medical Robotics

- **Key Applications:** Surgical robots, rehabilitation exoskeletons, robotic-assisted diagnostics, hospital service robots (medication delivery).
- **Impact:** Increases precision in surgery, reduces staff workload, improves rehabilitation outcomes.
- **Enhancements:** Al-driven decision support for predictive diagnostics and maintenance, cost optimization for wider hospital adoption.

4. Transport and Logistics

- **Key Applications:** Warehouse automation (sorting, picking, packing), autonomous guided vehicles (AGVs), robotic last-mile handling.
- **Impact:** Enhances supply chain efficiency, reduces labour costs, accelerates e-commerce fulfilment.
- **Enhancements:** Integration with AI/ML for predictive fleet maintenance, real-time inventory monitoring, and autonomous route optimization.

5. Hospitality

- **Key Applications:** Reception/concierge robots, robotic waiters, room-service delivery, automated bartenders.
- **Impact:** Improves guest experience, reduces operating costs, positions businesses as tech-forward.
- **Enhancements**: Al-driven personalization engines, predictive maintenance of robotic fleets, hybrid human-robot service models.

Others Include:

6. Inspection and Maintenance

- **Key Applications:** Infrastructure inspection (bridges, pipelines, power plants), solar panel and wind turbine O&M, oil & gas facilities.
- **Impact:** Extends asset life, ensures safety in hazardous environments, reduces downtime and maintenance costs.
- **Enhancements:** Standardization across industries, AI/ML-based predictive maintenance, real-time asset monitoring and anomaly detection.

7. Construction and Demolition

- **Key Applications:** Automated bricklaying, 3D-printing construction, autonomous demolition robots, site surveying.
- **Impact:** Reduces labour-intensive risks, accelerates project timelines, improves accuracy and safety compliance.
- **Enhancements:** Integration with BIM, predictive maintenance of robotic equipment, Al-driven workflow optimization.

8. Search, Rescue, and Security

- **Key Applications:** Disaster recovery, bomb disposal, perimeter surveillance, hazardous environment entry.
- Impact: Saves lives, minimizes human exposure, strengthens safety infrastructure.
- **Enhancements:** AI/ML-based predictive monitoring, higher autonomy in robotic operations, coordinated fleet management for disaster response.

5.1.1 Factors fueling growth in Robotics Industry

- 1. Technological Integration: The robotics industry is undergoing accelerated adoption of advanced technologies to enhance automation, precision, and intelligence across industrial and service domains. Key enablers include AI and machine learning for autonomous decision-making, IoT-enabled robotics for predictive maintenance, cloud-based orchestration platforms for real-time fleet management, and computer vision for dynamic navigation and object recognition. In logistics and manufacturing, integration of robotics with digital twins, 5G connectivity, and edge computing is streamlining operations and enabling hyper-efficient workflows. These innovations are driving higher productivity, reduced downtime, and measurable ROI improvements across industries.
- 2. Sustainability and ESG Alignment: As automation increasingly intersects with sustainability mandates, robotics is emerging as a critical tool for advancing ESG-aligned operations. Robots help minimize energy waste, reduce hazardous labor exposure, and optimize material utilization, directly contributing to net-zero and circular economy goals. In agriculture, autonomous systems support precision farming with lower input usage; in cleaning, waterless and chemical-efficient robots reduce environmental impact; and in logistics, robotic automation enables optimized energy-efficient routing. Governments and corporates are embedding ESG criteria into automation procurement, accelerating demand for green robotics solutions and low-footprint manufacturing technologies.
- **3. Expansion of Service Robotics Applications:** Rising global demand for automation in healthcare, agriculture, logistics, construction, and hospitality is fuelling investment in service robotics. Factors such as aging populations, labour shortages, rising wage pressures, and post-pandemic hygiene priorities are reshaping demand dynamics. Healthcare robotics (surgery, rehabilitation, hospital delivery), last-mile logistics robots, and agricultural automation are witnessing exponential uptake. Governments, particularly in Asia-Pacific and Europe, are incentivizing robotics adoption through R&D grants, automation subsidies, and smart city initiatives. This structural shift is rapidly expanding the addressable market for both hardware manufacturers and service providers.
- **4. Outsourcing and Robotics-as-a-Service (RaaS) Models:** The industry is shifting from capital-intensive, one-time equipment purchases to subscription-based and performance-linked robotics deployment models. Robotics-as-a-Service (RaaS) is gaining traction across logistics, cleaning, security, and hospitality segments, enabling organizations to adopt automation without upfront capex. Contracts increasingly include uptime guarantees, performance SLAs, and lifecycle maintenance, reflecting demand for total cost of ownership (TCO) optimization. This trend is institutionalizing the robotics ecosystem, with specialized solution providers consolidating their presence as integrated automation partners rather than equipment vendors.

5.1.2 Regional Insights:

• Asia-Pacific (APAC):

The world's fastest-growing robotics market, fuelled by China, Japan, South Korea, and India. Growth drivers include large-scale manufacturing automation, e-commerce logistics expansion, and strong government-backed robotics R&D initiatives. APAC dominates in industrial robots while also rapidly scaling service robotics across agriculture, healthcare, and smart city deployments.

North America:

A mature robotics market with deep adoption across automotive, aerospace, defence, healthcare, and logistics. The U.S. leads in robotics innovation through advanced startups and university-led R&D ecosystems, supported by venture capital funding. High demand for collaborative robots (cobots), autonomous warehouses, and surgical robotics positions North America as a technology leader.

Europe:

A hub for ESG-aligned robotics adoption, with strong regulatory frameworks emphasizing safety, ethical AI, and green manufacturing. Germany, Italy, and France are leading in industrial automation, while Nordic and Western European economies are scaling service robots for healthcare and aging populations. EU-driven policy frameworks are shaping global robotics compliance and ethical standards.

Middle East & Africa (MEA):

Emerging demand for robotics in construction, infrastructure, and security applications, driven by mega-projects in the Gulf (Saudi Arabia, UAE). Governments are investing in robotics for food security, logistics, and smart city ecosystems. Africa shows nascent but growing adoption in agriculture and healthcare, often supported by international development partnerships.

Latin America:

Fast-growing but infrastructure-constrained robotics market. Adoption is led by automotive manufacturing in Mexico and Brazil, agricultural robotics for export crops, and rising healthcare service robotics. However, high import costs and weak domestic R&D ecosystems are slowing large-scale adoption.

The global robotics industry is transitioning from siloed, equipment-centric deployments to integrated, digitally governed, and sustainability-aligned ecosystems. Clients increasingly prioritize autonomy, lifecycle accountability, AI-driven performance optimization, and ESG compliance. This signals a broader phase of institutionalization, service-model adoption, and cross-industry convergence. Digitally mature robotics firms—those capable of integrating hardware, software, and data intelligence into outcome-based service models—are strategically positioned to capture future-ready opportunities across industrial, commercial, and consumer domains.

5.2. Global Renewable Power Sector

The global power stack is rapidly transitioning from thermal baseload to variable renewables. Utility-scale solar and wind lead new deployments, while grid-scale batteries and flexible gas turbines increasingly balance intermittency.

- **Economics:** Solar's Levelized Cost of Electricity (LCOE) continues to fall due to advances in module efficiency, balance-of-system scale, digital O&M, and lower financing costs in mature markets.
- **Bottlenecks:** Expansion is still constrained by grid congestion, interconnection delays, land-use constraints, and trade measures (tariffs, AD/CVD).
- Investor insight: Solar has shifted from a "growth satellite" to a core capacity-addition asset class. Storage attachment rates are rising, expanding value creation across global portfolios.

5.2.1 Global Renewable Power Installed Capacity by Region (CY19-CY24)

Total renewable installed capacity (solar, wind, hydro, geothermal, bioenergy) expanded rapidly between 2019–2024, especially in Asia and Europe.

In GW	CY 2019	CY 2020	CY 2021	CY 2022	CY 2023	CY 2024	CAGR '19'24	Share of global %
World	2,542.85	2,812.98	3,075.93	3,378.79	3,862.88	4,448.05	11.83%	100%
Asia excl. India	996.71	1166.61	1308.79	1467.80	1785.27	2178.17	16.92%	48.97%
India	128.47	134.77	147.39	163.21	175.68	204.29	9.72%	4.59%
Europe	572.23	606.04	647.04	705.13	778.51	848.62	8.20%	19.08%
N America	392.94	424.73	462.21	492.47	527.11	573	7.84%	12.88%
Africa	50.31	53.67	55.58	59.29	62.67	66.89	5.86%	1.50%
Middle East excl. Saudi	21.32	23.20	25.43	29.89	33.91	35.47	10.72%	0.80%
Saudi Arabia	0.11	0.41	0.44	0.84	2.98	4.74	111.53%	0.11%
Others	380.73	403.52	429.03	460.14	496.73	536.83	7.11%	12.07%

Source: IRENA 2025

Asia (ex-India) and Europe outpaced other regions, propelled by Chinese scale and EU policy levers. Grid integration and stability remain persistent challenges, especially with higher shares of variable renewables.

5.3. Global Solar Energy

The global solar sector has emerged as the centrepiece of new power buildouts, recording unprecedented gains in both installed capacity and capital investment. Solar photovoltaic (PV) technology has become the dominant growth engine within the renewable energy mix, supported by sustained policy incentives, declining technology costs, and surging demand for clean, sustainable power. Between CY2019 and CY2024, total global solar capacity expanded from 592.65 GW to 1,865.49 GW, reflecting a remarkable CAGR of 25.78%. This trajectory underscores the sector's pivotal role in driving the global energy transition toward net-zero pathways.

In GW	CY 2019	CY 2020	CY 2021	CY 2022	CY 2023	CY 2024	CAGR '19'24
World Solar	592.65	723.63	866.83	1060.52	1413.54	1865.49	25.78%
Solar PV On-Grid	586.29	717.23	860.46	1053.96	1406.68	1858.62	25.96%
Solar PV Off grid	3.02	3.52	3.81	4.41	4.71	6.29	15.82%
Others	3.34	2.88	2.56	2.15	2.15	0.58	- 29.54 %

Note: Others include concentrated solar power, solar power heating and cooling, Agro voltaic, Building integrated solar, solar fuels, Other hybrid solar cells

Source: IRENA 2025, Infomerics Analytics & Research

Within the broader solar ecosystem, on-grid PV systems—which are directly connected to national and regional grids—account for approximately 99% of solar energy. On-grid PV capacity grew from 586.29 GW in CY2019 to 1,858.62 GW in CY2024, delivering a robust CAGR of 25.96%. These installations, spanning utility-scale plants and commercial/industrial rooftops, dominate the market by ensuring grid-level integration, large-scale power delivery, and reliable contribution to national energy security.

In contrast, Off-grid PV systems—comprising stand-alone home systems, lanterns, and rural mini-grids—remain a smaller but strategically significant segment. Global off-grid solar capacity increased from 3.02 GW in CY2019 to 6.29 GW in CY2024, achieving a CAGR of 15.82%. Although representing less than 2% of global solar capacity, off-grid systems are vital in bridging energy access gaps, particularly across Africa, South Asia, and rural Asia-Pacific, where electrification through centralized grids remains challenging.

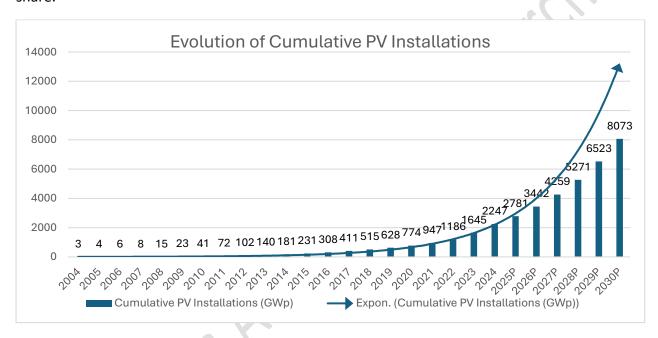
The bifurcation between on-grid and off-grid PV reflects the dual imperatives of global solar growth: scaling utility-scale projects to anchor national power generation, while deploying decentralized solutions to deliver last-mile energy access. Together, these dynamics reinforce solar PV's status as the fastest growing and most transformative pillar of global renewable energy.

5.3.1. Global Solar Power Installed Capacity by Region (CY19-CY24) - On Grid

Solar PV On-Grid constitute about 41.78% of the Total Renewable Energy. It has delivered the largest increment among renewables since 2019, led overwhelmingly by China and the rest of Asia, with Europe and India rising fast since 2021.

In Gigawatts	CY2019	CY2020	CY2021	CY2022	CY2023	CY2024	CAGR '19'24	Share of global %
World	586.29	717.23	860.46	1,053.9 6	1406.6 8	1,858.6 2	25.96%	100%
Asia ex.India	295.59	372	438.34	537.65	767.97	1058.43	29.06%	56.95 %
India	34.90	39.36	49.60	63.048	72.51	97.04	22.69%	5.22%
Europe	137.41	157.45	184.40	220.39	277.29	336.07	19.59%	18.08 %
North America	70.06	86.21	108.08	127.65	154.50	194.07	22.60%	10.44 %
Africa	8.19	9.55	10.48	11.52	12.43	14.29	11.77%	0.77%
Middle East excl. Saudi	5.56	7.304	9.42	13.17	16.37	17.81	26.19%	0.96%
Saudi Arabia	0.05	0.35	0.389	0.39	2.53	4.29	135.68 %	0.23%
Others	34.48	44.98	59.72	80.11	103.06	136.61	31.70%	7.35%

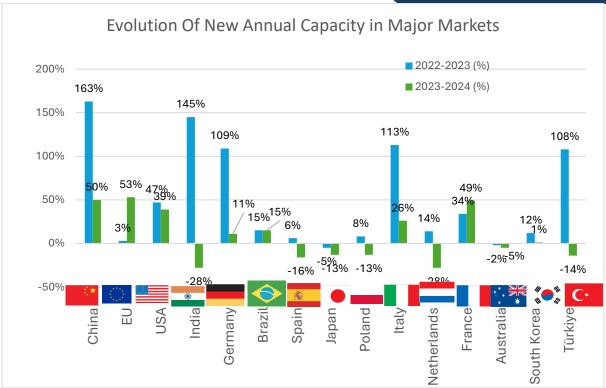
Source: IRENA 2025, For India the figures are estimated.


Asia (ex-India) emerged as the undisputed leader, with installed capacity surging from 295.59 GW in CY2019 to 1,058.43 GW in CY2024, reflecting a CAGR of 29.06% and capturing 56.95% of global share. China remains the overwhelming driver of this growth, leveraging economies of scale, state-backed manufacturing dominance, and rapid utility-scale deployment to cement its position as the world's largest solar market. Saudi Arabia, though a smaller player in absolute terms, posted exponential growth. Installed solar PV capacity expanded from just 0.05 GW in CY2019 to 4.29 GW in CY2024, translating into a world-leading CAGR of 135.68%. This surge reflects the early impact of Saudi Arabia's Vision 2030 diversification program and its accelerated pipeline of mega-projects across the Middle East.

Asia (China) and Europe dominate global solar buildout, enabled by both policy support and falling costs. The Middle East and Africa show the fastest proportional increases, but from smaller bases. India and Saudi Arabia are rapidly scaling utility PV via government-led tenders.

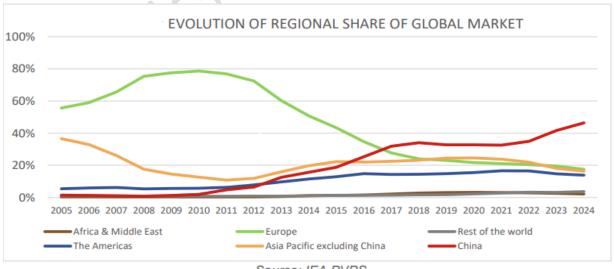
5.3.2. Global Solar PV Additions (CY17-CY30):

By end-2024, global cumulative solar PV capacity reached 2.25 TW, doubling from 1.18 TW in just two years — a milestone that previously took four decades to achieve. Annual installations exceeded 550 GW, sustaining growth above 35% and reinforcing solar PV as the dominant renewable technology. China alone accounted for nearly half of global cumulative capacity, with its annual additions now triple those of Europe, leaving other regions lagging in relative share.



Source: IEA PVPS, Infomerics Analytics & Research

Outside China, markets remained mixed: India (31.9 GW) and Pakistan (17 GW) posted strong expansions, while Japan, South Korea, and Australia stagnated. The United States (47.1 GW) rebounded, Brazil (14.3 GW) continued steady growth, and Europe diversified with nearly 20 countries exceeding 1 GW each despite declines in Spain and parts of Eastern Europe. Overall, solar PV now anchors the global energy transition, though grid stability, storage, and integration challenges are becoming increasingly evident in high-penetration markets.


At least 34 countries installed more than 1 GW in 2024 (up from 29 in 2023). A total of 25 countries now exceed 10 GW cumulative capacity, while seven surpass 40 GW. China alone crossed 1 TW, consolidating its dominance, while the EU reached 339.4 GW. The USA ranks third with 224.1 GW, and India overtook Japan to claim fourth place at 124.6 GW. Germany and Japan are both projected to exceed 100 GW by 2025.

Source: IEA PVPS, Infomerics Analytics & Research

While the global growth rate cooled to ~32% in 2024, absolute volumes remain extraordinary. China accounted for 59% of new global capacity, driven by domestic absorption of manufacturing capacity. The EU and USA together contributed 18%, while emerging markets such as India, Brazil, and Pakistan collectively installed the same capacity as the EU. Notably, Pakistan surged to 17 GW in 2024, more than 13 times its 2023 additions, underscoring rising demand in South Asia.

Source: IEA PVPS

The EU's growth slowed, with strong expansion in Germany and France offset by weaker additions in Spain and the Netherlands. Turkey's market grew steadily, supported by local manufacturing and high electricity prices, with several GW added in late 2023 and early 2024.

In contrast, South Korea's policy adjustments curbed deployment, and stable electricity tariffs dampened momentum in Spain.

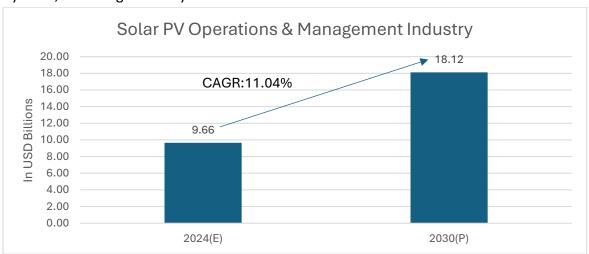
For Annual Installed Capacity					For Cumulative Capacity			
1	* <u>*</u> **	China	357.3GW	1	***★	China	1048.5 GW	
(2)	**************************************	European Union	62.6 GW	(2)	***	European Union	339.4 GW	
2		USA	47.1 GW	2		USA	224.1 GW	
3		India	31.9 GW	3	(S)	India	124.6 GW	
4	(*	Pakistan	17 GW	4		Germany	99.8 GW	
5		Germany	16.7 GW	5		Japan	96.9 GW	
6		Brazil	14.3 GW	6		Brazil	52.1 GW	
7	and the second	Spain	7.5 GW	7		Spain	47.2 GW	
8		Italy	6.6 GW	8	* *	Australia	38.6 GW	
9		France	5.9 GW	9		Italy	37 GW	
10		Japan	5.5 GW	10		South Korea	31.7 GW	


Note: The European Union grouped 27 European countries in 2024, out of which Germany, Spain, Italy, France also appear in the Top Ten, either for the annual installed capacity or the cumulative installed capacity. The European Commission is a member of IEA-PVPS through its Joint Research Centre (EC-JRC). IEA-PVPS preliminary assessment is higher than official China reporting. Source: IEA PVPS

India added 31.9 GW in 2024, taking cumulative capacity to 124.6 GW — overtaking Japan to become the fourth-largest global solar market. Growth was supported by low-cost imports (before cut-off deadlines) and corporate green mandates. India's momentum highlights both favourable cost structures and policy-backed demand.

5.3.3. Global Annual Investment in Solar PV (CY21-CY25)

Annual investment in solar PV rose sharply from USD 251 billion in 2021 to USD 503 billion in 2024, delivering a robust 18.98% CAGR. This growth far outpaced other renewables, where capital inflows expanded only marginally.


Source:IEA, Infomerics Analytics & Research

The investment surge reflects accelerating deployment pipelines, resilient policy frameworks (net-zero mandates, competitive auctions), expanding green finance pools, and strong corporate demand for decarbonization. Despite volatility in module pricing and supply chain costs, EPC-led deployment capital remained on an upward trajectory, underscoring solar PV's role as the anchor technology in the global energy transition.

5.4. Global Solar PV Operations and Management Industry

The global solar PV operations and maintenance (O&M) industry is emerging as a critical pillar of long-term asset performance and investor returns. Estimated at USD 9.66 billion in 2024, the market is projected to grow to USD 18.12 billion by 2030 and further to USD 27.54 billion by 2034, reflecting a healthy 11.04% CAGR over the decade.

Source: Infomerics Analytics & Research, E-estimated, P-Projected.

Growth in O&M demand directly parallels the exponential rise in cumulative PV installations. With global capacity surpassing 2.25 TW in 2024, the installed base of utility-scale and distributed projects requires increasingly sophisticated lifecycle services to maintain generation yield, optimize levelized cost of electricity (LCOE), and ensure compliance with evolving regulatory and ESG standards.

5.4.1. Key forces shaping the Solar PV Operations and Management include:

- **Scale of Installed Assets** As GW-scale additions persist annually, O&M demand is becoming annuity-like, with revenue models tied to long-term performance contracts.
- **Digitalization and Predictive Analytics** Al-driven monitoring, robot inspection, and digital twin technologies are shifting O&M from reactive to predictive, reducing downtime and optimizing asset health.
- **EPC-to-O&M Transition** Engineering, Procurement, and Construction (EPC) firms increasingly bundle O&M services, securing long-term annuity streams post-deployment.
- **Asset Ownership Shifts** Institutional investors and YieldCos. prioritize professional O&M providers to protect returns, driving consolidation and outsourcing.
- Regional Momentum Markets such as India, the Middle East, and Latin America exhibit heightened demand, where harsh climatic conditions necessitate high-frequency O&M interventions.

5.4.2. Benefits of Solar PV Operations and Management (O&M)

Robust Operations and Management (O&M) is no longer a peripheral service in solar PV deployment but a core enabler of asset longevity, yield optimization, and financial viability. As global capacity scales into multi-terawatt territory, disciplined O&M practices provide tangible benefits across technical, financial, and sustainability dimensions:

- **Performance Optimization:** Regular monitoring, predictive diagnostics, and preventive interventions reduce downtime, ensuring higher capacity utilization and generation yield.
- Cost Efficiency: Advanced O&M lowers lifecycle costs by mitigating equipment failures, optimizing spare part logistics, and extending asset lifespan — directly impacting the Levelized Cost of Energy (LCOE).
- Investor Assurance: Structured O&M contracts (availability guarantees, performance-linked payments) provide predictable cashflows, bolstering project bankability and attracting institutional capital.
- **Regulatory Compliance**: Standardized O&M frameworks ensure adherence to evolving grid codes, safety standards, and ESG-linked reporting obligations.
- **Technological Advantage:** Integration of robotics, waterless cleaning and AI-driven monitoring allows leaner operations in challenging terrains and resource-constrained geographies.
- Sustainability Impact: Efficient O&M reduces resource wastage (water, chemicals, manpower) while sustaining higher renewable generation, reinforcing the environmental credibility of solar portfolios.

In effect, Solar O&M functions as both a technical safeguard and a financial hedge, securing returns for asset owners while supporting the global energy transition.

5.4.3. Key Projects in Solar Operations and Management

The global solar O&M landscape is best understood through flagship projects that illustrate scale, innovation, and geographic adaptation. These projects serve as benchmarks for investors and policymakers, showcasing how predictive analytics, robotics, and digital integration are reshaping lifecycle management.

1. China – Ultra-Large Utility Parks

Gonghe Photovoltaic Project, Qinghai (3.18 GW): One of the world's largest contiguous PV plants, Gonghe deploys Al-driven diagnostics, autonomous cleaning systems, and centralized spare-part ecosystems to ensure operational resilience.

Inner Mongolia Bases (>1 GW each): Multiple ultra-large projects integrate advanced SCADA systems and digital twin platforms, optimizing O&M across dispersed assets in challenging terrain.

2. India – Bhadla & Rewa Ultra Mega Solar Parks

Rewa Ultra Mega Solar Park (750 MW): India's first ultra-mega park, supported by the World Bank Clean Technology Fund, features robotic cleaning, modular inverter upkeep, and SCADA-based yield optimization. Known for pioneering reverse bidding, it has set benchmarks in tariff reduction and O&M standardization.

Bhadla Solar Park (2.25 GW): The world's largest solar park adopts robotic cleaning systems, advanced grid management for desert variability, and integrated digital O&M platforms. Coordination between state and private developers ensures high availability ratios.

3. Middle East - Mohammed bin Rashid Al Maktoum Solar Park, Dubai

Targeting 5 GW by 2030, the project combines autonomous robotic cleaning, drone-based thermal imaging, and advanced control platforms. Integration of 15-hour storage capacity enables dispatchable solar output. The park is a global benchmark for desert solar efficiency and automated O&M execution.

4. United States – Large-Scale O&M Frameworks

Topaz Solar Farm (550 MW, California): Operated under a 25-year O&M contract with First Solar, emphasizing predictive maintenance, digital twin modeling, and availability guarantees.

Mount Signal Solar Farm (794 MW, California): Leverages fleet-wide condition monitoring, life-cycle predictive analytics, and advanced diagnostics to reduce downtime and extend asset life.

Solar Star (579 MW, California): Employs remote diagnostics and digital O&M systems to maintain consistent yield across a multi-block farm structure.

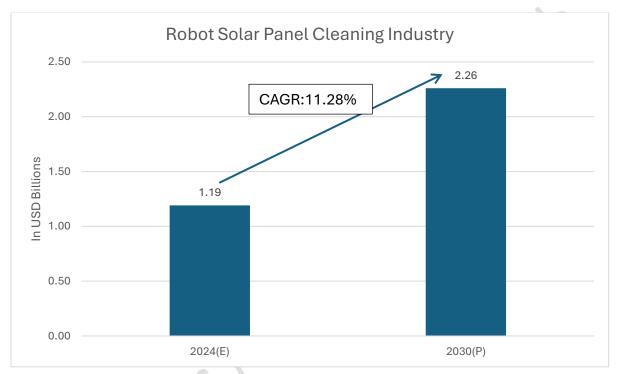
5. Europe – Distributed O&M Portfolios

Countries like Spain and Germany have pioneered aggregated O&M frameworks where multiple mid-sized portfolios (10–50 MW) are managed on unified digital platforms. This approach enables cost-per-MW reduction, fleet-wide health monitoring, and improved remote diagnostics across fragmented assets.

6. Africa – Benban Solar Park, Egypt (1.8 GW)

Africa's largest solar facility employs centralized O&M with digital task management systems and automation pilots, showcasing how standardized O&M contracts can de-risk large multi-developer projects in emerging markets.

Emerging Trends Across O&M Projects:


- **1. Automated robotic inspection systems** Use drones and robots with thermal cameras and visual sensors to quickly identify faults such as hotspots, cracks, or underperforming panels, reducing downtime.
- **2. Robotic cleaning solutions** Especially important in desert or high-dust regions, these water-efficient or waterless robots' clean panels more effectively than manual labour, keeping efficiency high.
- **3. Robotic vegetation management** Ground mounted Robots and autonomous mowers reduce the need for manual grass cutting and minimize use of water and chemicals, making site upkeep more sustainable.
- **4. AI/ML-driven predictive maintenance** By analyzing electrical data (e.g., IV curve diagnostics), operators can predict equipment failures, optimize panel performance at the module level, and cut repair costs.
- **5. Robotics-enabled asset monitoring** Advanced computer vision helps detect anomalies (like cracks, shading, or dirt) early, enabling preventive action before yield loss.
- **6. Cloud-enabled SCADA analytics** Remote monitoring systems now provide real-time visibility across multiple solar farms, improving decision-making and operational control.
- **7. Security AGVs**: Autonomous patrol robots provide rapid, on-ground security response with minimal human risk exposure.

Global Solar O&M (Operations & Maintenance) is shifting from manual, reactive practices to predictive, robotics-led lifecycle management. By integrating AI/ML, automation, and digital analytics, companies are ensuring stable yields, reduced costs, and bankable project cash flows. This makes O&M not just a support function but a strategic enabler of long-term solar investment.

5.5. Global Robotic Solar Cleaning Market

The global robotic solar panel cleaning market has transitioned from a niche solution into a mainstream operations and maintenance (O&M) enabler, driven by the rapid growth of utility-scale solar deployments, tightening ESG compliance mandates, and the financial imperative of yield maximization. The market was estimated at USD 1.19 billion in 2024 and is projected to reach USD 2.26 billion by 2030, reflecting a strong CAGR of 11.28% over the forecast period.

Source: Infomerics Analytics & Research, E-estimated, P-Projected.

Core solutions encompass autonomous waterless cleaning robots, semi-autonomous mobile and rope-based systems, and AI-enabled predictive cleaning platforms integrated with cloud-based monitoring and diagnostics. These technologies reduce reliance on manual labour, minimize water consumption in arid geographies, and ensure consistent performance ratios across solar assets.

Adoption is particularly strong in water-scarce, dusty, and utility-dense regions, where traditional manual cleaning remains resource-intensive and operationally inconsistent. Investors and asset owners increasingly favour robotic solutions to safeguard output, lower Levelized Cost of Energy (LCOE), and secure IRR-enhancing performance guarantees.

5.6. India's Solar Market

India has become the world's third-largest solar power producer, generating 1,08,494 GWh of solar energy in FY 2024–25, surpassing Japan's 96,459 GWh. As of July 2025, India's cumulative solar power capacity stood at 119.02 GW, comprising:

Ground-mounted solar plants

Grid-connected rooftop solar systems

Hybrid projects

Off-grid installations

- 90.99 GW Ground-mounted solar plants
- 19.88 GW Grid-connected rooftop solar systems
- **3.06 GW** Hybrid projects
- **5.09 GW** Off-grid installations

India's solar progress is central to its renewable energy growth, with renewables making up 50.07% of the country's total installed power capacity (484.82 GW) – a COP26 commitment achieved five years ahead of schedule.

The total solar sector potential of the Indian subcontinent is 748 GW. High potential states include Rajasthan, Gujarat, Karnataka, Tamil Nadu, Andhra Pradesh, Maharashtra, Madhya Pradesh, Chhattisgarh, and Odisha. Notably, Palli village (Jammu & Kashmir) has become India's first carbon-neutral panchayat, fully powered by solar energy.

Domestic Manufacturing Growth

India's solar manufacturing ecosystem has witnessed unprecedented expansion in the last two years, positioning the country as a self-reliant and globally competitive player across the solar value chain.

1. Solar Module Manufacturing

- Capacity nearly doubled within a year, rising from 38 GW in March 2024 to 74 GW in March 2025.
- This rapid expansion has been enabled by large-scale investments, government-led tendering, and Production Linked Incentive (PLI) schemes.

• The higher domestic module capacity reduces dependence on imported products, especially from China, and strengthens India's export competitiveness.

2. Solar PV Cell Manufacturing

- Capacity increased almost three-fold, from 9 GW in FY 2023–24 to 25 GW in FY 2024–25.
- This scaling up addresses one of the critical gaps in India's solar supply chain, where domestic PV cell production earlier lagged module assembly.
- Increased cell production ensures greater backward integration and lowers import reliance, particularly for projects supported under government-linked programs.

3. Ingot-Wafer Manufacturing

- A major milestone was achieved with the commissioning of India's first ingot-wafer manufacturing facility (2 GW capacity).
- Ingot-wafer production is a critical upstream process that provides the base material for solar cells. Until now, India depended almost entirely on imports for this stage of the value chain.
- Establishing this facility marks the beginning of India's transition towards a fully integrated solar manufacturing ecosystem, reducing vulnerabilities to global supply chain disruptions.

Policies such as Basic Customs Duty (BCD) on imported modules/cells and mandatory domestic sourcing under government schemes have supported this expansion.

India has emerged as a global leader in advancing solar energy cooperation through multilateral platforms. The International Solar Alliance (ISA), co-founded by India and France in 2015, now brings together over 100 member countries with the objective of mobilising USD 1 trillion in solar investments by 2030, reducing technology costs, and promoting affordable solar deployment, particularly in Least Developed Countries (LDCs) and Small Island Developing States (SIDS). Complementing this, the One Sun, One World, One Grid (OSOWOG) initiative, launched by India in 2018, envisions the creation of a transnational solar grid to enable cross-border electricity trade under the principle that "the sun never sets." By linking solar-rich regions across South Asia, Africa, and Europe, OSOWOG aims to ensure reliable, sustainable, and cost-effective energy access, reinforcing India's leadership in shaping the global clean energy transition.

6. Market Dynamics

6.1 Key Growth Drivers

The Robotic Solar Cleaning market in India is poised for accelerated adoption, driven by converging technology, cost, and policy dynamics. Falling hardware costs, increasing automation, and the imperative of maximizing solar yield in arid and dusty geographies are creating a compelling adoption case. Moreover, integration with SCADA/O&M(Supervisory Control and Data Acquisition/Operations and Maintenance) platforms and the emergence of service-based models (RaaS/SOaaS) are lowering upfront barriers while enhancing portfoliowide efficiency.

Market Drivers and Impact Assessment

(All values represent directional impact based on industry estimates and qualitative analysis)

	Drivers		Impact	
		1-2	3-4	5-7
		Years	Years	Years
1.	Hardware Cost Decline (Economies of Scale, Local Manufacturing)	Medium	High	High
2.	Al & Autonomy (Route Optimization, Predictive Analytics)	Medium	High	High
3.	Service Models (RaaS / Robotics Enabled O&M-aaS lowering adoption barriers)	Medium	High	High
4.	Waterless & Hybrid Cleaning R&D	Low	Medium	High
5.	SCADA/O&M Integration (APIs, Digital Reporting)	Medium	High	High
6.	Cross-Market Expansion (Sunbelt/Global Scale-Up)	Medium	Medium	High
7.	Rising Utility-Scale Solar Deployments	High	High	High
8.	ESG & Sustainability Alignment (Water Saving, Energy Yield)	Low	Medium	High

9. Government Policy Support (Renewable O&M guidelines, PLI-linked solar growth)	Medium	High	High
10. Private Equity & Infra Fund Interest in Yield- Enhancing Tech	Medium	Medium	High

Source: Infomerics Analytics & Research.

<u>Detailed Driver Commentary — Robotic Solar Panel Cleaning & O&M</u>

1. Hardware Cost Decline (Economies of Scale, Local Manufacturing)

- Cost trajectory: With larger installed fleets and component indigenization, robotics
 hardware is seeing steady cost compression. Domestic manufacturing under "Make in
 India" and similar localization policies will reduce dependency on imports and cut FX/tariff
 exposure.
- Market unlock: Lower upfront capex makes robots competitive with manual cleaning on lifecycle ROI, broadening adoption among mid-sized IPPs and EPCs.
- Impact: Medium in the short term (driven by pilot deployments), but High beyond 3–4 years as scale economics and local supply chains converge.

2. AI & Autonomy (Route Optimization, Predictive Analytics)

- Software-led differentiation: Route optimization, machine vision, and predictive soiling models transform robots from hardware assets into Al-driven O&M platforms.
- Performance assurance: Al-powered diagnostics (e.g., IV curve analysis, anomaly detection) improve cleaning frequency decisions and yield assurance.
- Impact: Starts Medium in 1–2 years due to limited deployment, but becomes High as predictive cleaning and autonomy become core to SLA-based O&M.

3. Service Models (RaaS / Robotics-Enabled O&M-as-a-Service)

- Shift from capex to opex: Robotics-as-a-Service (RaaS) lowers adoption barriers by converting upfront capital costs into subscription-like fees.
- Investor alignment: Long-term service contracts mirror infrastructure annuities, aligning with PE and infra fund preferences.
- Impact: Medium in near term, but High over 3–7 years as developers outsource O&M and favor recurring revenue contracts over ownership models.

4. Waterless & Hybrid Cleaning R&D

- Sustainability driver: ESG pressures and regional water scarcity accelerate R&D into dry brush, electrostatic, and hybrid (low-water + robotic) technologies.
- Adoption curve: Current impact is limited due to early-stage pilots, but waterless cleaning will become critical in desert geographies and ESG-sensitive procurement.
- Impact: Low near term, Medium in 3–4 years, and High over 5–7 years as technologies mature and costs fall.

5. SCADA / O&M Integration (APIs, Digital Reporting)

- Integration imperative: SCADA and API-driven dashboards transform cleaning data into actionable O&M intelligence.
- Investor needs: Enhanced digital reporting strengthens transparency, enabling financiers to verify yield protection and compliance.
- Impact: Medium near term, shifting to High from year 3 as digital integration becomes a requirement in institutional contracts.

6. Cross-Market Expansion (Sunbelt / Global Scale-Up)

- Replication economics: Proven solutions in India, MENA, or the U.S. Sunbelt can be exported to LATAM, Africa, and Australia with minor adaptation.
- Operational challenge: Requires localization to soil types, tilt/track systems, and service infrastructure.
- Impact: Medium in the early horizon, High over 5–7 years as vendors achieve global scale and amortize R&D.

7. Rising Utility-Scale Solar Deployments

- Demand backbone: GW-scale solar parks drive adoption since manual cleaning becomes logistically unviable.
- O&M consistency: Fleet cleaning robots support centralized scheduling and standardized site-wide performance.
- Impact: High across all horizons, remaining the single strongest driver of robotic adoption.

8. ESG & Sustainability Alignment (Water Saving, Energy Yield)

- Investor compliance: ESG mandates push adoption of water-saving robotics to meet sustainability KPIs.
- Reputation risk: Asset owners adopt robotic cleaning not only for efficiency but also to avoid stakeholder scrutiny over water usage.
- Impact: Low in the near term, scaling to High over 5–7 years as ESG-linked capital becomes mainstream.

9. Government Policy Support (Renewable O&M Guidelines, PLI-linked Solar Growth)

- Policy enabler: Renewable energy tenders increasingly embed performance clauses and water-use guidelines, indirectly favoring robotic adoption.
- PLI incentives: Local robotics and component manufacturing benefit from policy-driven ecosystem support.
- Impact: Medium in 1–2 years, High beyond year 3 as national policies institutionalize sustainable O&M practices.

10. Private Equity & Infrastructure Fund Interest in Yield-Enhancing Tech

- Capital attraction: RaaS and long-term O&M contracts are seen as predictable, annuity-like revenue streams.
- Consolidation path: Funds will back roll-ups of smaller vendors, professionalize service delivery, and create pan-regional O&M platforms.
- Impact: Medium in early horizon, scaling to High beyond 5 years as infra capital accelerates market consolidation.

6.2 Challenges and Threats

Despite sustained growth in solar deployments and tightening ESG-linked mandates, the Robotic Solar Panel Cleaning and O&M Industry faces structural and operational bottlenecks that could constrain scalability, efficiency, and profitability. These challenges are particularly acute in emerging markets, where high water stress, uneven automation adoption, rising labour costs, and fragmented service ecosystems limit seamless integration. Tier II/III geographies further amplify constraints through inadequate grid resilience, limited digital infrastructure, and higher operating costs, underscoring the need for innovation-led, cost-efficient, and predictive O&M solutions.

Market Threats, Challenges and Impact Assessment

(All values represent directional impact based on industry estimates and qualitative analysis)

Challenges and Threats	Impact			
	1–2 Years	3-4 Years	5-7 Years	
1. High Capital Intensity & Financing Gaps	High	Medium	Low	
2. Hardware Durability in Harsh Climates	High	High	High	
3. Skilled Workforce Dependence	Medium	High	High	
4. Adoption Barriers & Awareness Gap	Medium	Medium	High	
5. Supply Chain & Standardization Risks	High	High	Medium	
6. Policy, Margin, and Market Volatility	Medium	High	High	

Source: Infomerics Analytics & Research.

Detailed Commentary

1. High Capital Intensity & Financing Gaps:

 Robotic cleaning systems demand significantly higher upfront investment than manual or semi-mechanized water-based cleaning, creating adoption hesitancy.

- Developers, particularly smaller IPPs and captive solar operators, prioritize keeping O&M costs low at project inception, despite long-term benefits of water savings and improved yield.
- Financing remains a bottleneck: banks and NBFCs are cautious due to the limited collateral value of mobile robots and uncertain secondary markets.
- Without innovative models—such as pay-per-wash, robotics-as-a-service (RaaS), or bundled O&M contracts—penetration beyond large developers remains constrained.

2. Hardware Durability in Harsh Climates:

- Extreme conditions—dust abrasion, desert heat, high humidity, and sandstorms accelerate wear-and-tear on robotic systems.
- Frequent maintenance, replacement of parts, and higher failure rates undermine the value proposition of "low-maintenance automation."
- Lifecycle costs are elevated, especially in arid regions like Rajasthan or the Middle East, where robots are most needed.
- As hardware reliability improves, durability will remain a medium- to high-risk factor over the next decade.

3.Skilled Workforce Dependence:

- Robotics deployment requires a specialized talent pool familiar with AI/ML algorithms,
 SCADA integration, and IoT-enabled monitoring systems.
- Scarcity of skilled technicians creates operational bottlenecks in commissioning, predictive maintenance, and troubleshooting.
- This concentration of expertise in a few urban or industrial hubs slows nationwide scaling.
- Talent clustering increases costs for smaller developers, making them dependent on a handful of providers or OEMs.

4. Adoption Barriers & Awareness Gap:

- Many developers undervalue soiling-related energy losses, continuing with manual waterbased cleaning due to lower upfront costs.
- Lifecycle ROI—higher plant load factor (PLF), water savings, ESG compliance, and predictable performance—is poorly communicated to SMEs and local operators.

- Entrenched contractor ecosystems reinforce "comfort bias" toward traditional methods, even in water-scarce geographies.
- This cultural inertia slows the adoption of waterless robotics, despite regulatory and ESGlinked momentum to conserve water.

5.Supply Chain & Standardization Risks:

- Critical components—actuators, AI processors, batteries, and sensors—are largely imported, exposing providers to FX volatility, tariffs, and global supply chain disruptions.
- Dependence on overseas hardware undermines cost competitiveness against manual cleaning alternatives.
- Additionally, robotic solutions often lack interoperability across diverse solar park configurations (single-axis trackers, bifacial modules, fixed-tilt designs).
- Site-specific customization raises costs, delays deployment, and prevents scale economies across multi-vendor parks.

6. Policy, Margin, and Market Volatility

- Falling solar tariffs and compressed PPA margins discourage developers from allocating higher budgets toward robotic O&M.
- Policy ambiguity persists despite the water-saving and ESG benefits of robotics, there are
 no targeted subsidies or policy frameworks promoting adoption in water-stressed states.
- Fragmented vendor ecosystems further limit consistency in service quality, spare parts availability, and AMC compliance.
- Macroeconomic headwinds—including FX volatility, solar capex slowdowns, and liquidity stress—may constrain growth, though subscription-based models (RCaaS/SaaS) can partially mitigate cyclicality by converting capex into predictable opex.

7. Government Initiatives and Policy Support

India's policy architecture—centered on large solar parks, procurement reform, O&M standardization, water-conservation priorities, and industrial incentives—creates a powerful indirect demand engine for robotic solar cleaning and portfolio-level O&M solutions. Vendors that align product telemetry, waterless technologies, and localization strategies with these policy levers will face lower commercial friction and faster scale-up.

1. National Solar Mission (NSM - Phase II & III):

- The Jawaharlal Nehru National Solar Mission underpins India's target of 500 GW renewable capacity by 2030, of which solar is expected to contribute 280 GW+.
- Long-term PPAs, viability gap funding, and strict O&M standards reduce financial risk while mandating efficiency gains.
- With water scarcity a binding constraint, the policy push structurally favors waterless robotic cleaning as a scalable solution.

2. RESCO Model for Performance-Based O&M:

- The MNRE-backed Renewable Energy Service Company (RESCO) model enables thirdparty operators to manage solar assets under performance-linked revenue frameworks.
- This shifts developer priorities from upfront capex to efficiency-driven outcomes, boosting demand for robotic cleaning to maximize CUF (capacity utilization factor).
- RESCO-linked payments tie revenues directly to generation, reinforcing robotic O&M adoption.

3. PM-KUSUM Scheme (Agriculture-Linked Solarization):

- Targeting 30.8 GW by 2026, the scheme drives deployment of ground-mounted and decentralized solar plants in dust-prone rural environments.
- Government-backed DISCOM tariff agreements mitigate counterparty risk, enabling developers to invest confidently in automation-heavy O&M.
- Subsidies ranging from 30–50% for converting pumps or establishing up to 2 MW solar plants on farmland expand rural market opportunities for robotic cleaning.

4. Rooftop Solar & Distributed Adoption:

- The government's flagship PM Surya Ghar Muft Bijli Yojana (₹75,021 crore outlay) provides up to 300 units/month free power to 1 crore households, alongside capital subsidies of ₹30,000–₹78,000 for 1–3 kW systems.
- State programs like Surya Gujarat, Karnataka's 50% rooftop subsidy, and Maharashtra MEDA incentives further accelerate adoption.

• MSMEs, consuming nearly half of industrial electricity, benefit from collateral-free rooftop loans, vendor pre-approval, and policy support for storage and net metering—expanding distributed adoption and downstream O&M needs.

5. PLI Scheme for High-Efficiency Solar Modules:

- The Production Linked Incentive (PLI) scheme strengthens domestic manufacturing and sets higher efficiency benchmarks for solar modules.
- Given their premium cost and output, robotic O&M becomes essential to maintain peak lifecycle efficiency, strengthening the automation business case.

6. Regulatory and Tariff Frameworks:

- CERC and SERCs have embedded performance-linked tariff norms, penalizing undergeneration caused by dirty or poorly maintained panels.
- Generation-based incentives (GBIs) tie revenue to output, making robotic cleaning and telemetry-based O&M structurally aligned with policy.

7. Fiscal Policy Tailwinds:

- GST rationalization—lowering duties on solar modules and inverters while raising coal levies—has reduced LCOE for solar, improving project economics.
- This fiscal shift drives new capacity investments, which in turn scale demand for predictive and robotic O&M solutions.

8. Complementary Flagship Programs:

- Solar Parks Scheme: 53 approved parks (39,323 MW) across 13 states, with 13,896 MW operational; target 40 GW by March 2026.
- PM JANMAN Solar Scheme: ₹515 crore outlay to electrify 1 lakh PVTG households across 18 states.
- Floating Solar: 600 MW Omkareshwar Floating Solar Park (Madhya Pradesh).
- Agrivoltaics: Dual-use pilots like the Sunmaster Plant (Delhi) and ICAR's 105 kW project in Jodhpur.

Government initiatives across NSM, RESCO, PM-KUSUM, rooftop programs, PLI, tariff frameworks, and solar parks collectively create clear demand visibility, financial viability, and technology adoption pathways for robotic solar O&M. By linking revenues to performance, incentivizing efficiency, and embedding sustainability mandates, these policies de-risk developer cash flows while favoring automation, waterless cleaning, and telemetry-driven solutions. The policy ecosystem drives a dual-track growth trajectory:

- Volume-led adoption across Tier II/III and rural markets through subsidy-heavy schemes like PM-KUSUM and rooftop programs.
- Margin-driven adoption in utility-scale, industrial, and solar park projects through tariff reforms, PLI, and performance-linked O&M mandates.

Together, these drivers position robotic solar cleaning and automation-enabled O&M as structurally indispensable to India's renewable energy scale-up, ensuring long-term growth and investor confidence.

8. Technology & Digital Transformation

The Robotic Solar Panel Cleaning & O&M industry is undergoing a rapid technological evolution driven by the increasing scale of utility and distributed solar installations, operational cost pressures, ESG-linked water-use restrictions, and the demand for higher asset uptime. The sector is moving from reactive, manual cleaning toward predictive, Al-driven, IoT-enabled robotic fleets integrated with digital asset management platforms. This digital and automation transformation ensures optimized panel efficiency, reduced O&M costs, and real-time performance monitoring across utility-scale, commercial, and industrial solar installations.

1. Robotic Automation Platforms

Autonomous and semi-autonomous robotic cleaners are replacing manual labor in large and distributed PV assets. Key capabilities include:

- Al-driven path optimization and cleaning schedules.
- Multi-surface adaptability for fixed-tilt and tracking arrays
- Remote diagnostics for fleet utilization and maintenance planning
- Integration with plant SCADA for generation-linked cleaning triggers

Adoption is rising fastest in water-scarce regions, desert installations, and high-capacity utility PV farms.

2. IoT-Enabled Monitoring & Predictive Maintenance

Sensor networks embedded in robotic systems and PV modules enable:

- Real-time soiling, dust, and yield monitoring
- Automated fault detection in panels, inverters, and robotic units
- Predictive alerts for hardware maintenance and lifecycle management
- Energy and water-use tracking for ESG and investor reporting

These systems enhance reliability, minimize downtime, and support performance-linked O&M contracts.

3. AI & Analytics-Driven Operational Insights

Advanced analytics platforms consolidate multi-site cleaning and O&M data to:

- Benchmark cleaning efficiency and panel yield across sites
- Predict maintenance cycles and fleet deployment needs
- Optimize resource allocation and water usage for cost efficiency

• Generate SLA compliance reports for investors and regulators

Analytics-driven visibility ensures performance guarantees and high IRR outcomes.

4. Cloud-Integrated Asset Management Systems

Digital O&M platforms now centralize operations for multi-location solar assets:

- Real-time dashboards for robotic fleet health and utilization
- Remote scheduling and dispatch for site-level cleaning activities
- Historical performance reporting for plant and investor audits
- Integration with energy management systems and weather forecasts

Cloud adoption accelerates scalability and standardizes operational governance.

5. Mobile-First Field Operations

Technicians and supervisors increasingly rely on mobile-enabled tools for on-site operations:

- Geo-tagged maintenance logs and task updates.
- Real-time fault reporting and repair confirmation.
- QR/barcode scanning for spare parts and robotic unit tracking.
- Instant alerts on cleaning completion, water usage, and panel yield.

Mobile-first workflows improve agility and transparency in dispersed solar farms.

6. Cybersecurity & Data Protection

With cloud-linked fleets and investor-facing dashboards, data security is critical:

- Encrypted transmission of panel and cleaning data
- Role-based access for O&M teams and auditors
- Compliance with India's Digital Personal Data Protection (DPDP) Act and corporate data governance standards
- Blockchain-enabled traceability for performance and ESG reporting

Cybersecurity ensures integrity of performance-linked contracts and investor confidence.

7. ESG-Linked Digital Capabilities

Robotic O&M adoption is increasingly influenced by sustainability mandates:

- Water consumption tracking for desert and arid installations
- Al-enabled optimization of cleaning frequency to reduce carbon footprint
- ESG-compliant dashboards for investors and regulators
- Integration with corporate sustainability reporting frameworks

Green-tech adoption is now a differentiator in institutional and utility-scale tenders.

8. Emerging Technologies

The next wave of transformation includes advanced robotics and digital tools:

- Digital Twins for simulating cleaning routes and predicting robotic fleet performance.
- Augmented Reality (AR) for remote operator training and maintenance support
- Edge computing for on-site autonomous decision-making and real-time robotic optimization.
- Robotics-enabled asset management for real-time monitoring of soiling, module degradation, and panel performance

These technologies are accelerating operational efficiency, lowering O&M costs, and enhancing investor transparency.

Digital transformation is no longer optional but central to the growth of robotic solar panel cleaning and O&M. Investors, developers, and regulators now demand SLA-bound, ESG-compliant, and technology-driven performance. Players capable of integrating IoT, AI, cloud management, robotics, and sustainability metrics will dominate utility-scale and commercial solar operations, securing long-term, high-value contracts and strong market positioning.

9. PESTLE Analysis of the Industry

A comprehensive PESTLE (Political, Economic, Social, Technological, Legal and Environmental) analysis helps evaluate the external macro-environmental factors influencing Robotic Solar Panel Cleaning & O&M Industry. These factors significantly shape industry dynamics, demand patterns, business models, and investment opportunities in the medium to long term.

		Impact on Bahatia Calay Banal
Factor	Description	Impact on Robotic Solar Panel
		Cleaning & O&M Industry
Political	 Union Budget FY2025–26 and subsequent renewable energy allocations (≈₹1.1 lakh crore for energy transition and clean tech infrastructure) prioritize solar and distributed energy assets. MNRE (Ministry of New and Renewable Energy) schemes such as Solar Rooftop PV, CPSU-scale solar parks, and Viability Gap Funding (VGF) for O&M projects encourage structured solar asset deployment. State Renewable Energy Development Agencies (SREDAs) incentivize automated O&M and performance guarantees for utility-scale projects. Energy efficiency and ESG-linked mandates are being embedded into public tenders for solar assets. National Solar Mission Phase II & III emphasize long-term asset reliability and technology adoption. 	 Policy-backed solar expansion sustains structural demand for robotic cleaning and O&M. Incentives create direct adoption opportunities for RaaS/O&M vendors with performance guarantees. Increases entry barriers for unorganized manual cleaning providers, favouring structured, compliant players.
Economic	 Global and Indian solar PV capacity expected to grow at CAGR 12–15% over 2024–2030, with utility-scale and commercial rooftops driving O&M demand. High CAPEX of robotic fleets may constrain adoption for small-scale solar operators. Input cost inflation (robotic hardware, sensors, cloud software subscriptions) impacts vendor margins. Institutional investor interest (yieldcost, 	 Expands long-term demand for robotic O&M, especially in utility-scale plants and large rooftop portfolios. Drives vendors to optimize fleet economics and subscription-based RaaS models. Encourages PPP, performance-linked, and pay-per-clean business models for developers.

edicii		
	 infrastructure funds) supports structured O&M financing. Electricity tariffs and ESG-linked cost savings influence IRR-driven deployment decisions. 	
Social	 Growing awareness among solar asset owners about yield loss (up to 30% in dusty regions) and labour safety risks. Increasing ESG and sustainability compliance pressure from investors and multinational corporates. Adoption of large-scale solar in urban and semi-urban rooftops for commercial and industrial clients. Rising interest in green energy and climate-resilient operations among corporates and communities. Workforce preference shifts away from manual, high-exertion cleaning roles. 	 Drives adoption of autonomous waterless robots and Al-based predictive cleaning. Strengthens demand for digital monitoring and compliance reporting. Enhances market differentiation for vendors offering ESG-aligned, labourefficient solutions.
Techno- logical	 IoT-enabled sensor networks track panel cleanliness, yield, and environmental factors in real time. Al-driven route optimization, predictive maintenance, and fleet scheduling reduce downtime and operational costs. Robotics include autonomous waterless cleaning and rope/track systems for inspection and maintenance. Integration with cloud-based SCADA/asset management platforms enables centralized portfolio monitoring. Emerging tech such as AR for technician training and digital twins for predictive diagnostics is being piloted. 	 Vendors with advanced IoT, AI, and cloud integration capabilities gain competitive edge. Automation adoption drives recurring revenue from performance-based contracts. Early adoption of cutting-edge tech differentiates premium service providers in investor and utility portfolios.
Legal	 Solar tender contracts increasingly mandate uptime guarantees, performance SLAs, and periodic reporting. Data privacy regulations (DPDP Act) affect cloud-based monitoring and telemetry of solar assets. Liability frameworks for yield underperformance, warranty enforcement, and contractual O&M obligations. Environmental clearances and water-use regulations govern cleaning practices in sensitive geographies. 	 Ensures compliance-ready vendors can capture structured O&M contracts. Increases barriers to entry for unorganized providers lacking legal and contractual rigor. Encourages adoption of standardized reporting and monitoring systems to meet regulatory obligations.

Industry Report Aegeus Technologies Limited

	Intellectual property (IP) rights for	
	proprietary cleaning algorithms, hardware	
	design, and predictive software.	
	Water scarcity in arid and semi-arid	
	regions drives demand for waterless	
	cleaning technologies.	 Strengthens demand for
	 Solar panel degradation due to dust, 	waterless robotic cleaning and
	sand, and pollutants creates operational	predictive O&M solutions.
	risks requiring robust cleaning regimes.	 Positions vendors offering
Environ-	ESG reporting mandates push corporates	energy-efficient, low-carbon
mental	to adopt sustainable, low-impact O&M	operations as preferred
	solutions.	partners.
	Climate risks (heatwaves, storms) affect	Drives innovation in durable
	cleaning frequency, fleet deployment, and	robotic hardware suitable for
	maintenance schedules.	harsh environmental
	State and central renewable policies	conditions.
	promote low-carbon, automated solutions	
	for solar farms	

The convergence of policy support, rapid solar capacity expansion, ESG mandates, and technological advancements positions the robotic solar panel cleaning and O&M industry for structural growth. Vendors that can deliver IoT-enabled, AI-driven, and water-efficient solutions while ensuring contractual uptime and regulatory compliance are best placed to capture long-term, high-value contracts. Structured, performance-based business models, integrated digital monitoring, and ESG-aligned operations will differentiate organized players from manual and unorganized competitors, creating a sustainable competitive moat across utility-scale and commercial solar assets.

10. Competitive Landscape

The Robotic Solar Panel Cleaning & O&M Industry is evolving from fragmented, small-scale operations toward a more structured, service-integrated ecosystem. Competitive dynamics are shaped by technological differentiation (AI, robotics, waterless cleaning), operational reliability, ESG and water-use mandates, and the rising demand for performance-linked contracts. The sector is witnessing a strategic transition from one-off hardware sales to recurring revenue models encompassing installation, predictive maintenance, digital monitoring, and O&M services. This shift is being driven by solar asset owners' emphasis on total cost of ownership, operational efficiency, and guaranteed yield preservation, positioning service-oriented providers as preferred partners for utility-scale and commercial solar projects.

- 1. Multinational OEMs: Global leaders in premium robotic cleaning solutions dominate the market by offering advanced Al-enabled cleaning, predictive maintenance, and waterless technologies. Key advantages in this segment include extensive global R&D, proprietary robotics, cloud-integrated monitoring, and experience across large utility-scale and industrial solar installations. These solutions are primarily deployed in large solar parks, independent power producers (IPPs), and high-investment commercial projects.
- 2. Large Indian Manufacturers / Integrators: Indian manufacturers and regional EPCs offer competitively priced, end-to-end robotics and O&M solutions tailored for domestic solar installations. Solar developers typically engage EPCs, who source robotics and services from providers like Aegeus for cleaning, vegetation management, and asset monitoring, though direct procurement by developers is also feasible. Post-deployment, these integrators ensure ongoing maintenance, performance monitoring, and adherence to service-level commitments, leveraging local manufacturing capabilities, government-linked renewable initiatives, and regional service networks to deliver efficient, value-added solutions.
- **3. Mid-Sized Regional Players / Assemblers:** This segment consists of firms assembling or customizing robotic cleaners, track-based systems, and rope-access units for regional or distributed solar installations. They compete on cost, operational flexibility, and localized service delivery. Many are expanding into integrated O&M contracts, combining installation, periodic cleaning, and fleet monitoring under a single engagement.
- **4. Specialist / Niche Providers:** These include component suppliers, Al/software developers, IoT platform integrators, and maintenance-focused service providers. They often support larger OEMs or directly offer predictive analytics, cloud-based monitoring, and performance reporting for solar assets. Their role is critical in enabling operational efficiency, SLA compliance, and ESG-aligned waterless cleaning solutions.

10.1 Key factors shaping competition

The competitive dynamics of the Robotic Solar Panel Cleaning & O&M industry are increasingly determined by technological sophistication, operational reliability, integration capabilities, and the ability to offer outcome-based, yield-preserving solutions. Solar asset owners—ranging from utility-scale IPPs to commercial rooftop operators—are demanding consistent panel performance, minimal downtime, ESG-compliant water usage, and digitally monitored maintenance. The following structural and operational factors are shaping market positioning and long-term competitiveness:

- Technology & Autonomy: Providers with Al-enabled robotics, autonomous navigation, predictive maintenance, and waterless cleaning systems gain an edge. Advanced fleets that optimize cleaning schedules and minimize downtime differentiate from manual or semi-automated competitors.
- 2. Aftermarket & O&M Service Contracts: Long-term O&M agreements, remote monitoring, and SLA-backed performance guarantees create recurring revenue and customer retention. Firms offering predictive cleaning analytics, fleet management dashboards, and maintenance scheduling are preferred by institutional solar owners.
- **3. Utility-Scale & Distributed Solar Expertise:** The ability to operate efficiently across both GW-scale utility parks and smaller distributed rooftop installations provides a competitive moat. Players capable of handling heterogeneous panel layouts, tracker systems, and site topologies are positioned advantageously.
- **4. Digital Integration & IoT:** Cloud-connected monitoring, SCADA interoperability, and Alpowered analytics platforms are becoming standard expectations. Companies integrating data-driven reporting, yield forecasting, and asset performance metrics command premium positioning.
- 5. ESG & Water-Use Compliance: Growing focus on sustainability and regulatory pressure in water-scarce regions elevates providers of waterless or ultra-efficient cleaning solutions. Firms demonstrating compliance with ESG mandates and minimal resource consumption secure procurement preference.
- **6. Workforce & Technical Skilling:** Skilled engineers and technicians trained on robotic operations, predictive maintenance, and cloud-based diagnostics are scarce. Companies investing in training programs, AR-assisted maintenance tools, and remote support outperform peers.
- **7. Cost vs. Value Positioning:** While cost remains critical for smaller solar installations, utility-scale projects prioritize uptime, yield assurance, and SLA-backed performance. Providers balancing affordability with advanced service offerings can capture both segments effectively.

8. Strategic Partnerships & Consolidation: Collaborations with EPCs, asset owners, renewable energy funds, and technology integrators enhance market access. M&A and alliances among robotics providers and O&M specialists are expected to accelerate as the sector scales.

The Robotic Solar Panel Cleaning & O&M industry is transitioning from hardware-focused, cost-driven competition to technology-enabled, service-oriented, and compliance-aligned models. Sustainable competitive advantage increasingly depends on:

- R&D leadership in autonomous robotics and waterless cleaning technologies.
- Comprehensive lifecycle O&M capabilities ensuring predictable yield and SLA adherence.
- Ability to integrate digital monitoring and analytics for asset-wide visibility.
- Alignment with ESG, water-use, and performance-driven mandates.

Firms positioned at the nexus of technology depth, service integration, and regulatory alignment are likely to outperform as the sector matures and large-scale solar deployments accelerate.

10.2 Competitive Strategies

The Robotic Solar Panel Cleaning & O&M industry is evolving rapidly under the dual pressures of utility-scale solar expansion and ESG-linked sustainability mandates. Market leaders are recalibrating competitive strategies to combine advanced technology, service integration, performance guarantees, and vertical specialization. These approaches not only secure recurring revenues but also reinforce client confidence in predictable energy yields and reduced operational risks.

1. Integrated Solutions & Lifecycle Management

Leading providers are shifting from selling standalone robotic units to full-service lifecycle offerings covering deployment, automated cleaning, preventive maintenance, performance monitoring, and retrofitting of existing solar farms.

Bundled services include:

- Robotic fleet + IoT-enabled yield analytics + AMC contracts
- Tracker-aligned cleaning + waterless or minimal water systems + predictive diagnostics

This integrated model simplifies procurement, ensures predictable energy generation, and locks in multi-year recurring revenue streams for providers.

2. Vertical-Specific Customization

Companies are tailoring cleaning and O&M solutions to the operational and asset-specific requirements of key solar segments:

- Utility-Scale Solar Parks automated row-level cleaning, tracker system integration, remote monitoring dashboards.
- Commercial Rooftops compact robotic units with minimal footprint, automated scheduling, and water-efficient operations.
- Industrial Solar hybrid O&M contracts combining robotic cleaning with preventive panel inspection and minor repairs.
- Customization strengthens client relationships and increases qualification for tenderbased contracts and sustainability-linked procurement.

3. Technology & Digital Enablement

Digital integration is a competitive baseline, with leading firms deploying:

- IoT sensors for performance monitoring, panel soiling detection, and predictive cleaning scheduling
- Al-driven analytics to optimize cleaning frequency, energy yield, and water usage.

- Mobile and cloud platforms enabling fleet tracking, technician dispatch, and compliance logging
- Digital enablement ensures SLA adherence, operational transparency, and long-term client confidence.

4. Sustainability & ESG Differentiation

ESG compliance is becoming a key procurement criterion, especially for institutional and renewable-focused investors:

- Waterless cleaning systems or ultra-low water usage robotics
- Integration with renewable energy monitoring dashboards to track yield optimization
- Carbon footprint and water-use reporting embedded into AMC contracts
- Firms that demonstrate measurable sustainability impact gain preferential access to large-scale solar portfolios and government-supported renewable projects.

5. Contracting Innovation & Risk-Sharing Models

Providers are increasingly adopting outcome-based contracts:

- Performance-linked O&M contracts guaranteeing panel efficiency and energy yield
- SLA-driven uptime commitments with financial penalties for underperformance
- Hybrid models combining robotic hardware sales with retained O&M management
- These structures de-risk clients while ensuring long-term vendor alignment and recurring revenue.

6. Geographic & Segmental Diversification

To mitigate client concentration and seasonal variability, leaders are:

- Expanding into Tier II/III solar installations and decentralized rooftop deployments
- Targeting emerging applications such as agrivoltaics, EV-linked solar assets, and hybrid renewable microgrids
- Leveraging government and renewable-focused PPP frameworks for institutional solar projects

The Robotic Solar Panel Cleaning & O&M industry is consolidating around technology-enabled, service-integrated, and ESG-compliant delivery models. Companies demonstrating automation expertise, predictive analytics, lifecycle O&M, and sustainability alignment are best positioned to capture long-term, high-value contracts across utility-scale, commercial, and industrial solar segments. Market leadership will favour firms capable of integrating hardware, digital monitoring, AMC, and outcome-based service delivery into unified frameworks that guarantee both efficiency and asset longevity.

10.3 Barriers to Entry

The Robotic Solar Panel Cleaning & O&M industry, while experiencing rapid growth driven by India's renewable energy targets, climate mandates, and utility-scale solar deployment, remains structurally insulated by capital intensity, technological sophistication, regulatory compliance, and trust-based procurement. These barriers collectively protect the competitive position of established robotic OEMs, integrated O&M providers, and ESG-aligned service operators.

1. Capital-Intensive Technology and Deployment Ecosystem

Launching a credible robotic solar cleaning platform demands significant upfront investment in precision robotics, automation hardware, and IoT-enabled O&M infrastructure:

- Robotic design and fabrication facilities, including autonomous navigation modules, sensors, and precision actuators.
- R&D labs for cleaning efficiency, panel-safe materials, and weather-resilient robotics.
- IoT platforms for performance monitoring, predictive diagnostics, and fleet management.
- Fleet of cleaning robots and deployment tools for utility-scale solar farms.
- Regional logistics and service support networks for rapid response and preventive maintenance.

2. Regulatory and Environmental Compliance Complexity

The industry must navigate multi-tiered regulations and sustainability mandates:

- Solar EPC and O&M compliance under MNRE and SECI guidelines.
- ESG-linked requirements for water consumption, energy efficiency, and lifecycle impact.
- Robotics safety certifications, UL or equivalent laboratory validation reports, and electrical compliance norms.
- Panel manufacturer approvals or tie-ups determining which companies can service their modules, honouring warranties, guarantees, and post-sales obligations.

3. Institutional Procurement & Trust-Based Contracts

Utility-scale solar farms, government tenders, and institutional renewable projects demand:

Proven track record in robotic O&M, fleet management, and multi-site deployment.

 Verified UL or equivalent lab reports demonstrating cleaning efficacy and panel-safe operations

4. Skilled Workforce and Technical Training Barriers

Robotic solar O&M requires a technically proficient workforce:

- Engineers and technicians trained in robotics navigation, solar panel safety, and IoT monitoring.
- Structured training programs for remote troubleshooting and preventive maintenance.
- Deployment-ready personnel across multiple, dispersed solar installations.

5. Geographic Reach and Service Scalability

The industry is geographically dispersed, requiring scalable service networks:

- Regional service hubs and field support for rapid maintenance response.
- Logistics frameworks to move robots, spare parts, and cleaning tools across large solar parks.
- O&M contracts spanning Tier II/III solar projects as well as rooftop and commercial deployments.

6. ESG, Digital Integration, and Global Supply Chain Alignment

Procurement increasingly favors digitalized and ESG-compliant operations:

- Water-efficient, panel-safe robotics that meet ESG and sustainability audits.
- IoT-enabled fleet management, AI-driven predictive cleaning, and cloud-based performance analytics.
- Integration with renewable energy monitoring and investor-mandated carbon reporting frameworks, and manufacturer-mandated warranties.
- Global supply chain dependencies on sensors, navigation modules, and specialized robotic components favor incumbents with established supplier networks.

Beyond capital, regulatory, and technical barriers, entry into the Indian Robotic Solar Panel Cleaning & O&M market requires validated lab reports (e.g., UL), manufacturer approvals, warranty-backed deployment, post-sales support and demonstrated operational reliability. These elements collectively form the life of the market, ensuring that institutional clients prioritize safety, efficiency, and sustainability over low-cost, untested entrants.

10.4 Consolidation Trends in the Industry

India's Robotic Solar Panel Cleaning & O&M industry is entering a structural consolidation phase, driven by the imperatives of scale robotics manufacturing, autonomous technology integration, digital O&M platforms, ESG compliance, and lifecycle service depth. As utility-scale solar deployment accelerates and government renewable energy targets push institutional adoption, established players are pursuing M&A, platform integration, and service bundling strategies to strengthen competitive positioning across utility, commercial, and rooftop solar segments.

Key Consolidation Trends

1. M&A Activity to Expand Technology and Service Reach

Mid-cap robotic OEMs and regional O&M operators are increasingly merging or acquiring niche players to:

- Expand into Tier II/III solar parks and commercial rooftop installations.
- Acquire specialized capabilities in autonomous cleaning, water-efficient systems, or panel-safe
- Diversify offerings into Al-driven monitoring, predictive maintenance, and IoTenabled fleet management.

 Larger operators absorb smaller vendors to achieve geographic coverage, reduce deployment costs, and deepen access to institutional solar customers.

2. Private Equity & Strategic Platform Roll-Ups

PE firms and global renewable energy majors are investing in robotic O&M providers with strong order books and technology readiness. Consolidation enables:

- Roll-ups aggregating regional service operators under unified platforms.
- Capital infusion into R&D, digital monitoring platforms, and robotic fleet expansion.
- Strengthening governance, ESG alignment, and IPO preparedness for mid-market firms.

This trend is formalizing the sector and enhancing institutional confidence in robotic cleaning and O&M capabilities.

3. Integrated Solution Bundling — Equipment to O&M Contracts

Clients increasingly demand end-to-end solutions covering:

- Autonomous cleaning robots, water-recycling systems, and solar farm monitoring.
- Bundled contracts with preventive maintenance, remote diagnostics, and SLA-driven uptime guarantees.
- Energy optimization and predictive AI cleaning schedules to maximize panel efficiency.

Fragmented robotics and service providers are consolidating into full-stack solution platforms to meet these expectations.

4. Compliance-Driven Market Exit of Informal Players

Tighter ESG, safety, and MNRE-aligned operational standards are driving informal or unorganized players out:

- Mandatory CE/ISO certifications for robotic systems.
- Water usage and wastewater management compliance.
- Adherence to solar O&M contractual standards for institutional and government tenders.

Organized incumbents consolidate market share by absorbing vendor networks and long-term contracts.

5. Digital Platform Integration & Smart Operations Ecosystems

Advanced digitalization is becoming a cornerstone of scalable robotic O&M:

- IoT-enabled fleet monitoring, Al-driven predictive maintenance dashboards.
- Cloud-based solar farm performance analytics and cleaning optimization.
- Energy efficiency dashboards, ESG reporting, and SLA tracking for institutional clients.

Firms with integrated digital platforms gain a procurement advantage with multinational and government clients demanding transparency and compliance.

6. Global Partnerships & Technology Transfer

International renewable energy majors are consolidating or partnering with Indian robotics players:

- Technology transfer for autonomous navigation, sensors, and water-efficient systems.
- Joint ventures to localize global robotics solutions at Indian cost structures.
- Integration with global ESG, digital monitoring, and operational standards. These partnerships position Indian robotic O&M providers as hubs for South Asian solar deployment and institutional-grade service delivery.

Consolidation in the Robotic Solar Panel Cleaning & O&M industry is structural and irreversible. Institutional and utility-scale buyers are prioritizing ESG-aligned, digitally integrated, SLA-backed turnkey solutions. Firms that consolidate robotics design, fleet deployment, predictive maintenance, and digital monitoring under one platform — while embedding sustainability and compliance layers — will command premium contracts and emerge as long-term market leaders.

10.5 Key Industry Players

Global

Airtouch Solar Ltd. (Israel)

Airtouch Solar Ltd., founded in 2016 and listed on the Tel Aviv Stock Exchange since 2021, develops autonomous, water-free robotic cleaning systems for photovoltaic (PV) panels. Its patented brush-based dry-cleaning technology addresses up to 30% efficiency loss from dust, lowers O&M costs by reducing labor and water logistics, and supports ESG goals by saving billions of liters of water annually.

By 2024, the company had deployed over 20,000 robots across more than 9 GW of projects, with Israel and India as operational hubs. India, through Airtouch India, is the largest growth center, backed by long-term EPC/O&M contracts, while expansion is underway in China, the U.S., and MENA.

All systems comply with IEC PV module safety standards, are protected by proprietary patents, and have been validated by Tier-1 panel manufacturers for reliable operation in desert and semi-arid conditions. However, market adoption faces challenges in high-precipitation regions where rainfall reduces value, in cases of sticky soiling that require hybrid cleaning, and among smaller projects deterred by high upfront capex.

Ecoppia (TASE: ECPA) – Robotic Solar Panel Cleaning Solutions

Ecoppia, a publicly listed company headquartered in Israel, is a pioneer and global leader in robotic cleaning solutions for photovoltaic (PV) modules, with more than 16 GW of signed agreements across utility-scale projects. The company has established itself as synonymous with fully automated, water-free robotic O&M, tailored primarily for arid and desert geographies. Its technology combines automated, water-free cleaning with cloud-based business intelligence and predictive scheduling, enabling optimized cleaning cycles, remote data-driven management, and scalability across multi-gigawatt solar parks.

The company holds over 50 patents covering robotic cleaning methods, docking systems, and predictive maintenance algorithms. Its solutions have been certified by independent laboratories, PV module OEMs, tracker manufacturers, and global financial institutions, ensuring safety, compatibility, and bankability. Regular third-party validation of monthly panel cleaning further reinforces operational reliability and return on investment for utilities and investors.

Ecoppia benefits from its first-mover positioning and global brand recognition, with operations spanning Asia, MENA, Europe, and the Americas. The company also reports significant ESG contribution, notably saving 6.9 billion liters of water through its water-free technology. Nonetheless, adoption remains influenced by environmental and economic

conditions—rainfall reduces incremental value in certain geographies, sticky organic soiling often requires manual or hybrid methods, and higher upfront capex can deter smaller-scale deployments.

Sol-Bright – Global Leader in Robotic (Dry) Solar Cleaning Solutions

Founded in 2013, Sol-Bright is the world's largest manufacturer of robotic dry-cleaning systems for photovoltaic (PV) installations, having advanced from its first to seventh generation of robots. The company has delivered more than 85,000 units, covering approximately 30 GWp of installed solar capacity across over 30 countries. Its technology portfolio continues to evolve, with expansion into wind power O&M solutions, including tower lifts, anti-fall systems, and automated climbing devices. Sol-Bright's vertically integrated model—spanning R&D, manufacturing, warehousing, and O&M—supports cost efficiency, strict quality control, and rapid scaling.

All robotic systems are designed under ISO-certified quality management frameworks and are compliant with CE and IEC standards, enabling global deployment. The company also holds intellectual property and design rights across multiple generations of its robotic platforms, reinforcing its position as a benchmark player in the sector.

With the largest installed base worldwide, Sol-Bright has established itself as a reference provider of robotic solar cleaning systems while building capacity to extend into broader renewable O&M segments. At the same time, adoption patterns remain influenced by environmental and technical considerations. In precipitation-heavy geographies, the incremental value of dry-cleaning solutions is reduced, and as with other peers, sticky organic soiling often requires supplemental manual or hybrid methods.

Domestic

Solabot Technologies Pvt. Ltd. (India)

Founded by Amit Aggarwal, Solabot is an Indian provider of robotic dry-cleaning solutions for solar PV, with its flagship SB-01 Solar Panel Automatic Dry-Cleaning Robot deployed across megawatt-scale projects. The solution is designed to optimize panel efficiency, reduce water consumption, and lower manpower dependence, addressing the operational requirements of large solar farms in dusty Indian environments.

The company operates through a comprehensive service model that spans project evaluation, docking station setup, software upgrades, and long-term O&M support. Its systems are engineered with a 30-year design lifecycle and are supported by continuous in-house R&D to drive iterative improvements.

Manufacturing follows ISO 9001-certified quality management systems, while product testing and validation are conducted under IEC standards to ensure PV module compatibility. Solabot's solutions are also recognized within India's renewable energy O&M frameworks for large-scale solar deployments, reinforcing their applicability in the domestic mark.

Greenleap Robotics — Innovative Robotic Solar Panel Cleaning Solutions (India)

Greenleap Robotics, founded by IIT Delhi alumni, is an Indian developer of robotic cleaning solutions for solar PV. The company offers both fully autonomous (LOTUS-A4000) and semi-autonomous (LOTUS-P4000) waterless cleaning robots designed for utility-scale and rooftop installations. It has established a domestic footprint of more than 400 MWp, servicing over six million panels across 20+ sites in seven states and delivering estimated annual water savings of 12 million liters. Clients include Tier-1 solar developers and leading module OEMs.

The company's technology portfolio incorporates ultra-soft microfiber fins with airflow and controlled flicking action to remove dust without damaging anti-reflective coatings. Its patented dual-drive navigation system allows traversal across misalignments of up to 40 mm, while solar-powered docking stations enable full recharging within two hours. The systems deliver rapid returns, typically under nine months, and integrate with SCADA platforms for real-time monitoring, uptime assurance, and predictive analytics.

Greenleap's robots are tested and approved by Tier-1 OEMs such as LONGi, JA Solar, Trina Solar, and Canadian Solar. The LOTUS-P4000 incorporates automotive-grade electronics, 4G connectivity, IP65 ingress protection, and IK07 impact resistance, and complies with RoHS and CE certifications, ensuring international safety and durability standards.

As a domestically rooted startup, Greenleap has developed solutions tailored to India's operating conditions, including high efficacy in mitigating bird droppings—achieving 80–90% reduction within four cycles. Its modular and lightweight designs, with adjustable lengths between two and eight meters, enable flexible deployment across varied site configurations. At the same time, the company remains primarily India-focused, with scale still modest relative to global incumbents, and its intellectual property portfolio and certification base continue to evolve as it pursues international expansion.

10.6 Company Positioning – Aegeus Technologies Limited

Aegeus Technologies Limited ("Aegeus" or "the Company"), incorporated in Bengaluru, India, is a leading provider of IoT-driven green robotics solutions for solar O&M, specializing in autonomous cleaning, asset management, vegetation control, and security for utility-scale and commercial solar installations. The Company leverages advanced robotics, AI/ML, and IoT-enabled platforms to enhance panel efficiency, reduce operational downtime, and optimize resource utilization, while ensuring environmentally sustainable operations.

In 2017, Aegeus launched its flagship *Unicorn* and *Shreem* robotic platforms, along with complementary solutions including AGV-based vegetation management, Infishield radar intrusion detection, Security AGVs, Power Vantage SaaS, and Asset Guard ML-powered analytics. These offerings transformed Aegeus from a pure robotics hardware provider into a full-system solar O&M solutions company, integrating cleaning, monitoring, vegetation, and security services. Proprietary waterless cleaning technology, predictive analytics, and IoT-enabled fleet management differentiate its solutions in domestic and select international markets.

Key Differentiators:

- Integrated Solar O&M: End-to-end automation covering cleaning, vegetation management, security, and SaaS-based monitoring.
- Efficiency and Reliability: 99.84% cleaning efficiency (UL Labs certified) and computer vision-based anomaly detection.
- Market Access: Installed base exceeding 10 GW, with an established presence in Brazil, UAE, and Saudi Arabia, and business engagement in select European markets.
- ESG and Sustainability: Waterless cleaning, reduced manual labour exposure, energy optimization, and compliance with regulatory and investor ESG mandates.

Core Capabilities:

- Design, manufacturing, and deployment of autonomous robotic cleaning systems and AI-enabled monitoring platforms.
- Integrated O&M solutions combining robotics, software, and service delivery for predictive maintenance and performance optimization.
- Turnkey deployment capabilities, including training, multi-site rollouts, and lifecycle maintenance support.
- Recurring revenue generation through RCaaS and SaaS overlays, enhancing client stickiness.

Competitive Positioning:

The solar O&M robotics market is moderately fragmented, with multinational OEMs (Ecoppia, SolarCleano, Soltec, Langfang Sol-Bright) and regional Indian integrators competing on price, scale, and local adaptation. Aegeus differentiates through proprietary waterless robotic technology, integrated hardware-software ecosystems, ESG compliance, and multi-site operational reliability, delivering predictable yields and reduced operational risk for developers and EPCs.

Growth Strategy:

Aegeus' model is positioned to expand across utility-scale solar parks, commercial and industrial rooftops, and global markets. Growth drivers include capacity expansion, continuous R&D in robotics and AI/ML analytics, global certifications (UL, ISO), integration of ESG-aligned waterless solutions, and strengthening recurring revenue streams through RCaaS and SaaS offerings.

With proprietary robotics, IoT-enabled monitoring, AI-driven analytics, and end-to-end O&M services, Aegeus Technologies Limited is evolving into a comprehensive solar O&M automation solutions provider, consolidating its leadership in India's renewable energy ecosystem and establishing a resilient, scalable platform for global expansion

10.7 SWOT Analysis

Strengths Weaknesses Cost Competitiveness: High upfront Automation of Solar O&M: Proven ability capital expenditure and working-capital to automate large-scale operations with intensity limit adoption, particularly cleaning. AI/ML-powered among smaller developers. inspection, and predictive maintenance Technology Gaps: Absence of hybrid wetplatforms. cleaning solutions reduces efficacy in Global IP & Patent Base: Strong patent sticky soiling conditions (e.g., bird portfolios across major solar markets, safeguarding proprietary cleaning and droppings, resin). Liquidity navigation technologies. Constraints: Prolonged receivable cycles and project-linked cash • High Cleaning Efficiency: Robotic systems flows create stress for mid-tier operators. consistently reduce yield losses of up to Marketing & Visibility Limitations: 30%, ensuring superior operational Restricted brand awareness beyond EPC efficiency versus manual cleaning. and utility stakeholders, with weak digital **Comprehensive Offering:** Coverage across and social media outreach. ground-mounted utility projects and emerging rooftop solar, complemented by IoT-enabled monitoring and analytics. Installed Base & Scale: More than 10 GW+ of panels cleaned globally, reinforcing reliability and market validation. **Global Presence:** Operational footprints across Asia, MENA, Europe, and the Americas, positioning players to leverage cross-market growth. Diversification Potential: Capabilities extend beyond solar into broader robotics and renewable O&M solutions. **Strategic Partnerships**: Collaborations with EPCs, utilities, OEMs, and tech firms strengthen ecosystem integration and market credibility.

Opportunities	Threats
---------------	---------

- Exponential Market Growth: Expanding global solar installations, particularly in Asia, Africa, and MENA, underpin structural demand for robotic O&M.
- Global O&M Automation: Enter and scale within the global O&M segment, leveraging first-mover advantage.
- Rooftop Solar Expansion: Untapped commercial and residential rooftop markets offer high-margin growth potential.
- Recurring Revenue Models: Transition from hardware sales to "Cleaning-as-a-Service" and subscription-based predictive maintenance can unlock annuity-style revenues.
- Policy Tailwinds: Indian initiatives such as PM Har Ghar Surya Yojana and smart-city programs create demand for localized solar O&M solutions. Concurrently, higher GST on coal raises conventional power costs, strengthening the economic case for renewable energy adoption and indirectly increasing demand for solar O&M services.
- Digital Monetization: IoT and SCADAbased predictive insights enhance efficiency while deepening client stickiness.
- ESG Alignment: Water-efficient, lowcarbon robotic solutions support global sustainability mandates, improving access to green financing.

- Intensifying Competition: Entry of multinational robotics OEMs and large corporates in O&M compresses pricing and margins.
- Chinese Price Pressure: Low-cost imports from China threaten profitability and differentiation of established players.
- Technological Substitution: Emerging alternatives such as self-cleaning coatings, advanced surface treatments, or novel automation methods may challenge conventional robotic O&M solutions.
- Supply Chain & Input Risks: Volatility in sensors, electronics, and robotics components impacts cost structures.
- Geopolitical Exposure: Trade disputes, tariffs, and currency risks affect exportdriven revenue streams.
- Regulatory Burden: Compliance with renewable energy mandates, safety standards, and ESG frameworks increases R&D intensity and operating costs.

11. Future Outlook

The Robotic Solar Panel Cleaning and Operations & Maintenance (O&M) industry is on the verge of transitioning from a specialized offering into a mainstream operational necessity, driven by the consolidation of solar power as the backbone of the global energy mix. Going forward, three forces will define the industry's trajectory—technology maturity, capital alignment, and sustainability imperatives.

On the technology front, robotic cleaning is evolving from standalone automation into an integral part of digital O&M ecosystems. Advances such as AI-driven scheduling, predictive cleaning algorithms, and cloud-enabled SCADA integration are expected to dominate future deployments. By 2030, autonomous, waterless robotic fleets are projected to become the industry standard in arid, dusty, and utility-scale markets, facilitating the shift toward fully predictive asset management.

Capital alignment is also reshaping the sector. As ownership of solar assets increasingly shifts to institutional investors, YieldCos, and infrastructure funds, performance-linked financing and availability guarantees are embedding robotic cleaning as a safeguard for cash flows. Robotic O&M is steadily moving into an annuity-based service model supported by long-term contracts, providing stable recurring revenue streams for solution providers while de-risking returns for asset owners.

Sustainability and ESG imperatives will serve as the third structural driver of adoption. Water stress across high solar potential geographies such as the Middle East, India, Africa, and Central Asia is accelerating the demand for waterless robotic cleaning solutions. Beyond efficiency, robotic O&M is now viewed as a compliance and reputational tool, enabling asset owners to demonstrate adherence to resource-efficient operations in line with growing investor and regulatory scrutiny.

Regionally, adoption trends are set to diverge. China and the United States are likely to lead large-scale deployment by leveraging their advanced domestic robotics ecosystems, scale economics, and digital integration capabilities. India and the Middle East are poised to emerge as the fastest-growing demand centers due to desert climatic conditions, acute water scarcity, and aggressive solar capacity buildouts. Europe, meanwhile, is expected to focus on standardization, ESG compliance, and fleet-level digital integration, consolidating O&M across distributed portfolios.

The industry structure is expected to crystallize along two parallel paths. At the utility-scale level, robotic O&M fleets will be embedded into multi-gigawatt parks under long-term service contracts. In parallel, distributed commercial and industrial O&M platforms will gain ground by offering modular robotic cleaning and remote monitoring for rooftop and mid-scale solar installations. Consolidation is anticipated as global robotics manufacturers, EPC contractors,

and digital O&M players converge to deliver end-to-end lifecycle solutions. Startups in India, Israel, and Europe specializing in waterless and AI-driven cleaning are expected to attract acquisition interest from global utilities and infrastructure funds. By 2030, robotic solar O&M will be fully institutionalized as a strategic enabler of asset bankability, yield assurance, and ESG compliance—transforming from a cost center into a value-creation lever embedded within the financial architecture of renewable energy projects.

Policy momentum further strengthens this outlook. India added 29.52 GW of renewable capacity in FY 2024–25, raising total clean power capacity to 220.10 GW. In July 2025, the Union Cabinet approved a ₹7,000 crore exemption for NLC India Ltd to scale renewable projects via its arm NIRL, targeting 10 GW by 2030 and 32 GW by 2047. India's broader 2030 ambition of achieving 500 GW of non-fossil fuel electricity capacity is expected to be anchored by solar, supported by enabling policy measures such as long-term power purchase agreements, grid strengthening, storage expansion, domestic manufacturing under the Make in India initiative, innovative land-use solutions like floating solar and agrivoltaics, and concessional financing.

Strategically, India remains firmly on track to achieve 500 GW of clean energy capacity by 2030 and net zero emissions by 2070. Solar power will remain central to this transition, underpinning energy security by reducing coal imports, spurring domestic manufacturing and employment generation, and widening energy access through rural electrification and tribal welfare schemes. At the global level, India's leadership will be reinforced through platforms such as the International Solar Alliance (ISA) and the One Sun One World One Grid (OSOWOG) initiative, strengthening its positioning as both a domestic and international driver of the clean energy economy.

For Infomerics Analytics & Research Pvt Ltd

Uday TG

Director – Ratings

Place: Bangalore